1
|
Ma H, Chen S, Zhang X, Sun T, Huo P, Cui X, Man B, Yang C, Wei D. Cation Enrichment Effect Modulated Nafion/Graphene Field-Effect Transistor for Ultrasensitive RNA Detection. NANO LETTERS 2024; 24:16245-16252. [PMID: 39660777 DOI: 10.1021/acs.nanolett.4c03989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The graphene field-effect transistor (GFET) biosensor serves as a foundational platform for detecting biomolecules, offering high conductivity, label-free operation, and easy integration. These features have garnered significant attention in biomarker detection. However, the presence of free cations in solution often leads to electrostatic shielding of negatively charged biomolecules, reducing GFET detection sensitivity (LOD ≥ 1 fM). Additionally, the limited capacitance change in GFET restricts its use as a response signal. This study introduces a cation enrichment electric field modulation strategy (CEEFMS) to enhance capacitance and Dirac voltage response during detection. The cation-enriched rough Nafion/graphene FET (CENG-FET) achieves RNA detection at the aM level. Utilizing total capacitance change and Dirac voltage shift as response signals, the CENG-FET demonstrates a wide linear range from 1 aM to 1 pM. These findings advance dual-signal detection strategies, reducing accidental inaccuracies in biomolecular sensing and paving the way for further research.
Collapse
Affiliation(s)
- Heqi Ma
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Tianyu Sun
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Panpan Huo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiangyong Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, People's Republic of China
| | - Dongmei Wei
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
2
|
Malashin I, Daibagya D, Tynchenko V, Gantimurov A, Nelyub V, Borodulin A. Predicting Diffusion Coefficients in Nafion Membranes during the Soaking Process Using a Machine Learning Approach. Polymers (Basel) 2024; 16:1204. [PMID: 38732673 PMCID: PMC11085799 DOI: 10.3390/polym16091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Nafion, a versatile polymer used in electrochemistry and membrane technologies, exhibits complex behaviors in saline environments. This study explores Nafion membrane's IR spectra during soaking and subsequent drying processes in salt solutions at various concentrations. Utilizing the principles of Fick's second law, diffusion coefficients for these processes are derived via exponential approximation. By harnessing machine learning (ML) techniques, including the optimization of neural network hyperparameters via a genetic algorithm (GA) and leveraging various regressors, we effectively pinpointed the optimal model for predicting diffusion coefficients. Notably, for the prediction of soaking coefficients, our model is composed of layers with 64, 64, 32, and 16 neurons, employing ReLU, ELU, sigmoid, and ELU activation functions, respectively. Conversely, for drying coefficients, our model features two hidden layers with 16 and 12 neurons, utilizing sigmoid and ELU activation functions, respectively.
Collapse
Affiliation(s)
- Ivan Malashin
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
| | - Daniil Daibagya
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim Tynchenko
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
| | - Andrei Gantimurov
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
| | - Vladimir Nelyub
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
- Scientific Department, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Aleksei Borodulin
- Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia (A.G.); (V.N.); (A.B.)
| |
Collapse
|
3
|
Lara Í, Freijanes Y, Muñoz S, Ruiz G, Barragán VM. Examining the Effect of Ionizing Radiations in Ion-Exchange Membranes of Interest in Biomedical Applications. MEMBRANES 2023; 13:592. [PMID: 37367796 DOI: 10.3390/membranes13060592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
The possible effects of ionizing radiation on four commercial membranes, which are typically used as electrolytes in fuel cells supplying energy to a huge variety of medical implantable devices, were studied. These devices could obtain energy from the biological environment through a glucose fuel cell, which could be a good candidate to replace conventional batteries as a power source. In these applications, materials with high radiation stability for the fuel cell elements would be disabled. The polymeric membrane is one of the key elements in fuel cells. Membrane swelling properties are very important because they affect the fuel cell's performance. For this reason, the swelling behaviors of various samples of each membrane irradiated with different doses were analyzed. Each sample was irradiated with a typical dose of a conventional radiotherapy treatment, and the regular conditions of the biological working environment were simulated. The target was to examine the possible effect of the received radiation on the membranes. The results show that the ionizing radiation influenced their swelling properties, as well as that dimensional changes were dependent on the existence of reinforcement, be it internal or external, in the membrane structure.
Collapse
Affiliation(s)
- Íñigo Lara
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, Complutense University of Madrid, 28040 Madrid, Spain
| | - Yago Freijanes
- Radiotherapy Service at the General University Hospital Gregorio Marañón, 28007 Madrid, Spain
| | - Sagrario Muñoz
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gema Ruiz
- Radiotherapy Service at the General University Hospital Gregorio Marañón, 28007 Madrid, Spain
| | - V María Barragán
- Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Ninham BW, Battye MJ, Bolotskova PN, Gerasimov RY, Kozlov VA, Bunkin NF. Nafion: New and Old Insights into Structure and Function. Polymers (Basel) 2023; 15:2214. [PMID: 37177360 PMCID: PMC10181149 DOI: 10.3390/polym15092214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The work reports a number of results on the dynamics of swelling and inferred nanostructure of the ion-exchange polymer membrane Nafion in different aqueous solutions. The techniques used were photoluminescent and Fourier transform IR (FTIR) spectroscopy. The centers of photoluminescence were identified as the sulfonic groups localized at the ends of the perfluorovinyl ether (Teflon) groups that form the backbone of Nafion. Changes in deuterium content of water induced unexpected results revealed in the process of polymer swelling. In these experiments, deionized (DI) water (deuterium content 157 ppm) and deuterium depleted water (DDW) with deuterium content 3 PPM, were investigated. The strong hydration of sulfonic groups involves a competition between ortho- and para-magnetic forms of a water molecule. Deuterium, as it seems, adsorbs competitively on the sulfonic groups and thus can change the geometry of the sulfate bonds. With photoluminescent spectroscopy experiments, this is reflected in the unwinding of the polymer fibers into the bulk of the adjoining water on swelling. The unwound fibers do not tear off from the polymer substrate. They form a vastly extended "brush" type structure normal to the membrane surface. This may have implications for specificity of ion transport in biology, where the ubiquitous glycocalyx of cells and tissues invariably involves highly sulfated polymers such asheparan and chondroitin sulfate.
Collapse
Affiliation(s)
- Barry W. Ninham
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2600, Australia
| | | | - Polina N. Bolotskova
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Rostislav Yu. Gerasimov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Valery A. Kozlov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| | - Nikolai F. Bunkin
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, Moscow 105005, Russia
| |
Collapse
|
5
|
Bunkin NF, Bolotskova PN, Gladysheva YV, Kozlov VA, Timchenko SL. Adsorption of Methylene Blue on the Surface of Polymer Membrane; Dependence on the Isotopic Composition of Liquid Matrix. Polymers (Basel) 2022; 14:polym14194007. [PMID: 36235955 PMCID: PMC9572169 DOI: 10.3390/polym14194007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
As was found in our previous works, when Nafion swells in water, polymer fibers unwind into the bulk of the surrounding liquid. This effect is controlled by the content of deuterium in water. Here, we present the results of studying the dynamics of methylene blue (MB) adsorption on the Nafion surface for MB solutions based on natural water (deuterium content is 157 ppm, the unwinding effect occurs) and based on deuterium-depleted water (DDW; deuterium content is 3 ppm, there is no unwinding). In addition, we studied the dynamics of water desorption during drying of the Nafion polymer membrane after soaking in MB solution based on natural water and DDW. It turned out that in the case of natural water, the rate of MB adsorption and water desorption is higher than in the case of DDW. It also turned out that the amount of MB adsorbed on the membrane in the case of natural water is greater than in the case of DDW. Finally, it was found that the desorption of water during drying is accompanied by a rearrangement of the absorption spectrum of Nafion. This rearrangement occurs earlier in the case of DDW. Thus, by infinitesimal changes in the deuterium content (from 3 to 157 ppm) in an aqueous solution, in which a polymer membrane swells, we can control the dynamics of adsorption and desorption processes. A qualitative model, which connects the observed effects with the slowing down of diffusion processes inside the layer of unwound fibers, is proposed.
Collapse
|
6
|
Bunkin NF, Astashev ME, Bolotskova PN, Kozlov VA, Kravchenko AO, Nagaev EI, Okuneva MA. Possibility to Alter Dynamics of Luminescence from Surface of Polymer Membrane with Ultrasonic Waves. Polymers (Basel) 2022; 14:2542. [PMID: 35808587 PMCID: PMC9269195 DOI: 10.3390/polym14132542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
The temporal dynamics of luminescence from the surface of Nafion polymer membranes have been studied. In fact, the polymer membrane was soaked in liquids with different contents of deuterium. The test liquids were ordinary (natural) water (deuterium content equal to 157 ppm) and deuterium-depleted water (deuterium content is equal to 3 ppm). Simultaneously with the excitation of luminescence, the Nafion plate was irradiated with ultrasonic pulses, having a duration of 1 μs. The ultrasonic waves were generated with different repetition rates and amplitudes, and irradiated the surface of Nafion in the geometry of grazing or normal incidence. Luminescence regimes were studied when the membrane was irradiated with one ultrasonic wave (one piezoelectric transducer) or two counter-propagating waves (two piezoelectric transducers). It turned out that ultrasonic waves, which fall normal to the membrane interface, do not affect the dynamics of luminescence. At the same time, in the case of ultrasonic irradiation in the grazing incidence geometry, sharp jumps in the luminescence intensity occur, and the behavior of these jumps substantially depends on the mode of irradiation: one or two piezoelectric transducers. This allows for control of the dynamics of luminescence from the polymer surface. In accordance with this model, the possibility of altering the luminescence dynamics is due to the effect of unwinding the polymer fibers from the surface toward the liquid bulk upon soaking. It is important that such unwinding does not occur in deuterium-depleted water, which was confirmed in a direct experiment with dynamic light scattering from polydisperse aqueous suspensions of Nafion nanometer-sized particles; these suspensions were prepared in ordinary water and deuterium-depleted water. Thus, ultrasonic irradiation affects the dynamics of luminescence only when Nafion is swollen in ordinary water; in the case of deuterium-depleted water this effect is missed.
Collapse
Affiliation(s)
- Nikolai F. Bunkin
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Street 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (A.O.K.); (M.A.O.)
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Street 38, 119991 Moscow, Russia; (M.E.A.); (E.I.N.)
| | - Polina N. Bolotskova
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Street 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (A.O.K.); (M.A.O.)
| | - Valeriy A. Kozlov
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Street 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (A.O.K.); (M.A.O.)
| | - Artem O. Kravchenko
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Street 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (A.O.K.); (M.A.O.)
| | - Egor I. Nagaev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Street 38, 119991 Moscow, Russia; (M.E.A.); (E.I.N.)
| | - Maria A. Okuneva
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2-nd Baumanskaya Street 5, 105005 Moscow, Russia; (P.N.B.); (V.A.K.); (A.O.K.); (M.A.O.)
| |
Collapse
|
7
|
Diclofenac Ion Hydration: Experimental and Theoretical Search for Anion Pairs. Molecules 2022; 27:molecules27103350. [PMID: 35630826 PMCID: PMC9146526 DOI: 10.3390/molecules27103350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Self-assembly of organic ions in aqueous solutions is a hot topic at the present time, and substances that are well-soluble in water are usually studied. In this work, aqueous solutions of sodium diclofenac are investigated, which, like most medicinal compounds, is poorly soluble in water. Classical MD modeling of an aqueous solution of diclofenac sodium showed equilibrium between the hydrated anion and the hydrated dimer of the diclofenac anion. The assignment and interpretation of the bands in the UV, NIR, and IR spectra are based on DFT calculations in the discrete-continuum approximation. It has been shown that the combined use of spectroscopic methods in various frequency ranges with classical MD simulations and DFT calculations provides valuable information on the association processes of medical compounds in aqueous solutions. Additionally, such a combined application of experimental and calculation methods allowed us to put forward a hypothesis about the mechanism of the effect of diclofenac sodium in high dilutions on a solution of diclofenac sodium.
Collapse
|