1
|
Wijesekara T, Xu B. New Insights into Sources, Bioavailability, Health-Promoting Effects, and Applications of Chitin and Chitosan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17138-17152. [PMID: 39042786 DOI: 10.1021/acs.jafc.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Chitin and chitosan are mostly derived from the exoskeletons of crustaceans, insects, and fungi. Chitin is the second most abundant biopolymer after cellulose, and it is a fibrous polysaccharide which resists enzymatic degradation in the stomach but undergoes microbial fermentation in the colon, producing beneficial metabolites. Chitosan, which is more soluble in the alkaline small intestine, is more susceptible to enzymatic action. Both biopolymers show limited absorption into the bloodstream, with smaller particles exhibiting better bioavailability. The health effects include anti-inflammatory properties, potential in immune system modulation, impacts on cholesterol levels, and antimicrobial effects, with a specific focus on implications for gut health. Chitin and chitosan exhibit anti-inflammatory properties by interacting with immune cells, influencing cytokine production, and modulating immune responses, which may benefit conditions characterized by chronic inflammation. These biopolymers can impact cholesterol levels by binding to dietary fats and reducing lipid absorption. Additionally, their antimicrobial properties contribute to gut health by controlling harmful pathogens and promoting beneficial gut microbiota. This review explores the extensive health benefits and applications of chitin and chitosan, providing a detailed examination of their chemical compositions, dietary sources, and applications, and critically assessing their health-promoting effects in the context of human well-being.
Collapse
Affiliation(s)
- Tharuka Wijesekara
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec H9X 3V9, Canada
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| |
Collapse
|
2
|
Flesińska J, Szklarska M, Matuła I, Barylski A, Golba S, Zając J, Gawlikowski M, Kurtyka P, Ilnicka B, Dercz G. Electrophoretic Deposition of Chitosan Coatings on the Porous Titanium Substrate. J Funct Biomater 2024; 15:190. [PMID: 39057310 PMCID: PMC11277708 DOI: 10.3390/jfb15070190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Medicine is looking for solutions to help implant patients recover more smoothly. The porous implants promote osteointegration, thereby providing better stabilization. Introducing porosity into metallic implants enhances their biocompatibility and facilitates osteointegration. The introduction of porosity is also associated with a reduction in Young's modulus, which reduces the risk of tissue outgrowth around the implant. However, the risk of chronic inflammation remains a concern, necessitating the development of coatings to mitigate adverse reactions. An interesting biomaterial for such modifications is chitosan, which has antimicrobial, antifungal, and osteointegration properties. In the present work, a porous titanium biomaterial was obtained by powder metallurgy, and electrophoretic deposition of chitosan coatings was used to modify its surface. This study investigated the influence of ethanol content in the deposition solution on the quality of chitosan coatings. The EPD process facilitates the control of coating thickness and morphology, with higher voltages resulting in thicker coatings and increased pore formation. Ethanol concentration in the solution affects coating quality, with higher concentrations leading to cracking and peeling. Optimal coating conditions (30 min/10 V) yield high-quality coatings, demonstrating excellent cell viability and negligible cytotoxicity. The GIXD and ATR-FTIR analysis confirmed the presence of deposited chitosan coatings on Ti substrates. The microstructure of the chitosan coatings was examined by scanning electron microscopy. Biological tests showed no cytotoxicity of the obtained materials, which allows for further research and the possibility of their use in medicine. In conclusion, EPD offers a viable method for producing chitosan-based coatings with controlled properties for biomedical applications, ensuring enhanced patient outcomes and implant performance.
Collapse
Affiliation(s)
- Julia Flesińska
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Magdalena Szklarska
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Izabela Matuła
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Sylwia Golba
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Julia Zając
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| | - Maciej Gawlikowski
- Foundation of Cardiac Surgery Development, Institute of Heart Prostheses, 35a Wolności St., 41-800 Zabrze, Poland; (M.G.); (P.K.)
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelt’s Str. 40, 41-800 Zabrze, Poland
| | - Przemysław Kurtyka
- Foundation of Cardiac Surgery Development, Institute of Heart Prostheses, 35a Wolności St., 41-800 Zabrze, Poland; (M.G.); (P.K.)
| | - Barbara Ilnicka
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16 St., 44-100 Gliwice, Poland;
| | - Grzegorz Dercz
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty St. 1 A, 41-500 Chorzów, Poland; (J.F.); (I.M.); (A.B.); (S.G.); (J.Z.)
| |
Collapse
|
3
|
Esmaeili J, Jalise SZ, Pisani S, Rochefort GY, Ghobadinezhad F, Mirzaei Z, Mohammed RUR, Fathi M, Tebyani A, Nejad ZM. Development and characterization of Polycaprolactone/chitosan-based scaffolds for tissue engineering of various organs: A review. Int J Biol Macromol 2024; 272:132941. [PMID: 38848842 DOI: 10.1016/j.ijbiomac.2024.132941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Research in creating 3D structures mirroring the extracellular matrix (ECM) with accurate environmental cues holds paramount significance in biological applications.Biomaterials that replicate ECM properties-mechanical, physicochemical, and biological-emerge as pivotal tools in mimicking ECM behavior.Incorporating synthetic and natural biomaterials is widely used to produce scaffolds suitable for the intended organs.Polycaprolactone (PCL), a synthetic biomaterial, boasts commendable mechanical properties, albeit with relatively modest biological attributes due to its hydrophobic nature.Chitosan (CTS) exhibits strong biological traits but lacks mechanical resilience for complex tissue regeneration.Notably, both PCL and CTS have demonstrated their application in tissue engineering for diverse types of tissues.Their combination across varying PCL:CTS ratios has increased the likelihood of fabricating scaffolds to address defects in sturdy and pliable tissues.This comprehensive analysis aspires to accentuate their distinct attributes within tissue engineering across different organs.The central focus resides in the role of PCL:CTS-based scaffolds, elucidating their contribution to the evolution of advanced functional 3D frameworks tailored for tissue engineering across diverse organs.Moreover, this discourse delves into the considerations pertinent to each organ.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran; Department of Tissue Engineering, TISSUEHUB Co., Tehran, Iran; Tissue Engineering Hub (TEHUB), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Silvia Pisani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12,27100 Pavia, Italy
| | - Gaël Y Rochefort
- Bioengineering Biomodulation and Imaging of the Orofacial Sphere, 2BIOS, faculty of dentistry, tours university, France; UMR 1253, iBrain, Tours University, France
| | | | - Zeynab Mirzaei
- Institute for Nanotechnology and Correlative Microscopy e.V.INAM, Forchheim, Germany
| | | | - Mehdi Fathi
- Department of Esthetic and Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amir Tebyani
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| | - Zohreh Mousavi Nejad
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland; Centre for medical engineering research, school of mechanical and manufacturing engineering, Dublin city university, D09 Y074 Dublin, Ireland
| |
Collapse
|
4
|
Agarwal T, Chiesa I, Costantini M, Lopamarda A, Tirelli MC, Borra OP, Varshapally SVS, Kumar YAV, Koteswara Reddy G, De Maria C, Zhang LG, Maiti TK. Chitosan and its derivatives in 3D/4D (bio) printing for tissue engineering and drug delivery applications. Int J Biol Macromol 2023; 246:125669. [PMID: 37406901 DOI: 10.1016/j.ijbiomac.2023.125669] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Tissue engineering research has undergone to a revolutionary improvement, thanks to technological advancements, such as the introduction of bioprinting technologies. The ability to develop suitable customized biomaterial inks/bioinks, with excellent printability and ability to promote cell proliferation and function, has a deep impact on such improvements. In this context, printing inks based on chitosan and its derivatives have been instrumental. Thus, the current review aims at providing a comprehensive overview on chitosan-based materials as suitable inks for 3D/4D (bio)printing and their applicability in creating advanced drug delivery platforms and tissue engineered constructs. Furthermore, relevant strategies to improve the mechanical and biological performances of this biomaterial are also highlighted.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India.
| | - Irene Chiesa
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | - Anna Lopamarda
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | | | - Om Prakash Borra
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | | | | | - G Koteswara Reddy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Carmelo De Maria
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
5
|
A comprehensive review of chitosan applications in paper science and technologies. Carbohydr Polym 2023; 309:120665. [PMID: 36906368 DOI: 10.1016/j.carbpol.2023.120665] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Using environmentally friendly biomaterials in different aspects of human life has been considered extensively. In this respect, different biomaterials have been identified and different applications have been found for them. Currently, chitosan, the well-known derivative of the second most abundant polysaccharide in the nature (i.e., chitin), has been receiving a lot of attention. This unique biomaterial can be defined as a renewable, high cationic charge density, antibacterial, biodegradable, biocompatible, non-toxic biomaterial with high compatibility with cellulose structure, where it can be used in different applications. This review takes a deep and comprehensive look at chitosan and its derivative applications in different aspects of papermaking.
Collapse
|
6
|
Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review. Int J Biol Macromol 2023; 231:123354. [PMID: 36681228 DOI: 10.1016/j.ijbiomac.2023.123354] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Nowadays, the most common approaches in the prognosis, diagnosis, and treatment of diseases are along with undeniable limitations. Thus, the ever-increasing need for using biocompatible natural materials and novel practical modalities is required. Applying biomaterials, such as chitosan nanoparticles (CS NPs: FDA-approved long-chain polymer of N-acetyl-glucosamine and D-glucosamine for some pharmaceutical applications), can serve as an appropriate alternative to overcome these limitations. Recently, the biomedical applications of CS NPs have extensively been investigated. These NPs and their derivatives can not only prepare through different physical and chemical approaches but also modify with various molecules and bioactive materials. The potential properties of CS NPs, such as biocompatibility, biodegradability, serum stability, solubility, non-immunogenicity, anti-inflammatory properties, appropriate pharmacokinetics and pharmacodynamics, and so forth, have made them excellent candidates for biomedical applications. Therefore, CS NPs have efficiently applied for various biomedical applications, like regenerative medicine and tissue engineering, biosensors for the detection of microorganisms, and drug delivery systems (DDS) for the suppression of diseases. These NPs possess a high level of biosafety. In summary, CS NPs have the potential ability for biomedical and clinical applications, and it would be remarkably beneficial to develop new generations of CS-based material for the future of medicine.
Collapse
|