1
|
Wang X, Han J, Zhang S, Liu K, Fan X, Bai C, Chen G. Self-polymerization silica nanoparticles based molecularly imprinted polymers for selective recognition of protein. J Chromatogr A 2024; 1732:465260. [PMID: 39142168 DOI: 10.1016/j.chroma.2024.465260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Molecularly imprinted polymers (MIPs) are promising for precise protein separation and purification. However, challenges persist due to their large size, variable configuration, and instability during preparation. Here, a simple silicon self-assembly program was designed to synthesize MIPs without any organic reagents and acid-base catalysis, avoiding the structural damage of protein under severe conditions. In this method, employing hemoglobin (Hb) as a model protein, with tween-20 in emulsification, and tetraethyl orthosilicate (TEOS) as the cross-linking agent, along with co-functional monomers 3-aminopropyltriethoxysilane (APTES) and benzyl(triethoxy)silane (BnTES), enhanced binding efficacy was achieved. Successful imprinting was evidenced through surface morphology observation and physical/chemical property evaluations of the synthesized MIPs. A series of adsorption experiments were performed to investigate the recognition performance of Hb-MIPs. The Hb-MIPs not only exhibited large adsorption capacity (400 μg/mg) and good imprinting factor (6.09) toward template protein, but also showed satisfactory selectivity for reference proteins. Five cycles of adsorption proved that the Hb-MIPs had good reusability. In addition, the successful isolation of HB from bovine blood indicated that Hb-MIPs were an excellent separation and purification material. The mild preparation conditions and good adsorption capacity demonstrated the potential value of this method in separation and purification research.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Jili Han
- Center for Hybrid Nanostructures, Universität Hamburg, Hamburg, Germany
| | - Shuxian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Keshuai Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoxuan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Changcai Bai
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Sorout M, Bhogal S. Current trends of functional monomers and cross linkers used to produce molecularly imprinted polymers for food analysis. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38907585 DOI: 10.1080/10408398.2024.2365337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Molecularly imprinted polymers (MIPs) as artificial synthetic receptors are in high demand for food analysis due to their inherent molecular recognition abilities. It is common practice to employ functional monomers with basic or acidic groups that can interact with analyte molecules via hydrogen bonds, covalent bonds, and other interactions (π-π, dipole-ion, hydrophobic, and Van der Waals). Therefore, selecting the appropriate functional monomer and cross-linker is crucial for determining how precisely they interact with the template and developing the polymeric network's three-dimensional structure. This study summarizes the advancements made in MIP's functional monomers and cross-linkers for food analysis from 2018 to 2023. The subsequent computational design of MIP has been thoroughly explained. The discussion has concluded with a look at the difficulties and prospects for MIP in food analysis.
Collapse
Affiliation(s)
- Mohit Sorout
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Shikha Bhogal
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| |
Collapse
|
3
|
Piletsky SS, Baidyuk E, Piletska EV, Lezina L, Shevchenko K, Jones DJL, Cao TH, Singh R, Spivey AC, Aboagye EO, Piletsky SA, Barlev NA. Modulation of EGFR Activity by Molecularly Imprinted Polymer Nanoparticles Targeting Intracellular Epitopes. NANO LETTERS 2023; 23:9677-9682. [PMID: 37902816 PMCID: PMC10636853 DOI: 10.1021/acs.nanolett.3c01374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/15/2023] [Indexed: 10/31/2023]
Abstract
In recent years, molecularly imprinted polymer nanoparticles (nanoMIPs) have proven to be an attractive alternative to antibodies in diagnostic and therapeutic applications. However, several key questions remain: how suitable are intracellular epitopes as targets for nanoMIP binding? And to what extent can protein function be modulated via targeting specific epitopes? To investigate this, three extracellular and three intracellular epitopes of epidermal growth factor receptor (EGFR) were used as templates for the synthesis of nanoMIPs which were then used to treat cancer cells with different expression levels of EGFR. It was observed that nanoMIPs imprinted with epitopes from the intracellular kinase domain and the extracellular ligand binding domain of EGFR caused cells to form large foci of EGFR sequestered away from the cell surface, caused a reduction in autophosphorylation, and demonstrated effects on cell viability. Collectively, this suggests that intracellular domain-targeting nanoMIPs can be a potential new tool for cancer therapy.
Collapse
Affiliation(s)
- Stanislav S. Piletsky
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, United Kingdom
| | - Ekaterina Baidyuk
- L.A.
Orbeli Institute of Physiology NAS, Yerevan 0028, Republic of Armenia
- Institute
of Cytology, 197101 Saint-Petersburg, Russia
| | - Elena V. Piletska
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Larissa Lezina
- Department
of Cancer Studies, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | - Donald J. L. Jones
- Leicester
Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, United Kingdom
- Department
of Cardiovascular Sciences, University of
Leicester, Leicester LE1 7RH, United
Kingdom
- National
Institute for Health Research, Leicester Biomedical Research Centre,
Glenfield Hospital, Leicester LE1 7RH, United
Kingdom
| | - Thong H. Cao
- Department
of Cardiovascular Sciences, University of
Leicester, Leicester LE1 7RH, United
Kingdom
- National
Institute for Health Research, Leicester Biomedical Research Centre,
Glenfield Hospital, Leicester LE1 7RH, United
Kingdom
| | - Rajinder Singh
- Leicester
Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, United Kingdom
| | - Alan C. Spivey
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, United Kingdom
| | - Eric O. Aboagye
- Department
of Surgery and Cancer, Imperial College
London, Hammersmith Campus, Du Cane Road, London SW7 2BX, United
Kingdom
| | - Sergey A. Piletsky
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Nickolai A. Barlev
- Nazarbayev
University School of Medicine, 53 Kabanbay Batyr Ave, Nur-Sultan 010000, Republic
of Kazakhstan
- Sechenov
First Medical University, 119992 Moscow, Russia
| |
Collapse
|
4
|
Cegłowski M. Editorial: Advance in Molecularly Imprinted Polymers. Polymers (Basel) 2023; 15:3199. [PMID: 37571093 PMCID: PMC10421066 DOI: 10.3390/polym15153199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Molecularly imprinted polymers (MIPs), due to their unique recognition properties, have found various applications, mainly in extraction and separation techniques; however, their implementation in other research areas, such as sensor construction and drug delivery, has also been substantial [...].
Collapse
Affiliation(s)
- Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
5
|
García Y, Vera M, Jiménez VA, Barraza LF, Aguilar J, Sánchez S, Pereira ED. Molecularly imprinted nanoparticle-based assay (MINA) for microcystin-LR detection in water. Analyst 2023; 148:305-315. [PMID: 36541436 DOI: 10.1039/d2an01680j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microcystins (MCs) are highly toxic peptides produced by cyanobacteria during algal blooms. Microcystin-leucine-arginine (MC-LR) is the most toxic and common MC variant with major effects on human and animal health upon exposure. MC-LR detection has become critical to ensure water safety, therefore robust and reliable analytical methods are needed. This work reports the development of a simple and optimized Molecularly Imprinted Nanoparticle-Based Assay (MINA) for MC-LR detection in water. Molecularly Imprinted Nanoparticles (MINs) were prepared by solid-phase polymerization on glass beads conjugated to MC-LR through (3-aminopropyl) triethoxysilane (APTES) via amide bonding. APTES-modified glass beads were obtained under optimized conditions to maximize the density of surface amino groups available for MC-LR conjugation. Two quinary mixtures of acrylic monomers differing in charge, polarity, and functionality were selected from molecular docking calculations and used to obtain MINs for MC-LR recognition using N,N'-methylene-bis-acrylamide (BIS) as the crosslinking agent. MINs were immobilized by physical adsorption onto 96-well polystyrene microplate and evaluated as per their rebinding capacity toward the analyte by using a covalent conjugate between MC-LR and the enzyme horseradish peroxidase (HRP). Experimental conditions for the MINs immobilization protocol, HRP-MC-LR concentration, and composition of the blocking solution were set to maximize the colorimetric response of the MINs compared to non-treated wells. Optimized conditions were then applied to conduct competitive MINAs with the HRP-MC-LR conjugate and the free analyte, which confirmed the preferential binding of MC-LR to the immobilized MINs for analyte concentrations ranging from 1 × 10-5 nmol L-1 to 100 nmol L-1. The best competitive MINA showed a limit of detection of 2.49 × 10-4 nmol L-1 and coefficients of variation less than 10% (n = 6), which are auspicious for the use of MINs as analytical tools for MC-LR detection below the permissible limits issued by WHO for safe water consumption (1.00 nmol L-1). This assay also proved to be selective to the analyte in cross-reactivity studies with two analogous microcystins (MC-RR and MC-YR). Analyses of lagoon and drinking water samples enriched with MC-LR revealed strong matrix effects that reduce the MINA response to the analyte, thus suggesting the need for sample pretreatment methods in future development in this subject.
Collapse
Affiliation(s)
- Yadiris García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| | - Luis F Barraza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| | - Joao Aguilar
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Susana Sánchez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Eduardo D Pereira
- Departamento de Química Analítica e Inorgánica Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
6
|
Woźnica M, Sobiech M, Luliński P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:248. [PMID: 36677999 PMCID: PMC9863567 DOI: 10.3390/nano13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Molecular imprinting technology is a well-known strategy to synthesize materials with a predetermined specificity. For fifty years, the "classical" approach assumed the creation of "memory sites" in the organic polymer matrix by a template molecule that interacts with the functional monomer prior to the polymerization and template removal. However, the phenomenon of a material's "memory" provided by the "footprint" of the chemical entity was first observed on silica-based materials nearly a century ago. Through the years, molecular imprinting technology has attracted the attention of many scientists. Different forms of molecularly imprinted materials, even on the nanoscale, were elaborated, predominantly using organic polymers to induce the "memory". This field has expanded quickly in recent years, providing versatile tools for the separation or detection of numerous chemical compounds or even macromolecules. In this review, we would like to emphasize the role of the molecular imprinting process in the formation of highly specific siloxane-based nanomaterials. The distinct chemistry of siloxanes provides an opportunity for the facile functionalization of the surfaces of nanomaterials, enabling us to introduce additional properties and providing a way for vast applications such as detectors or separators. It also allows for catalyzing chemical reactions providing microreactors to facilitate organic synthesis. Finally, it determines the properties of siloxanes such as biocompatibility, which opens the way to applications in drug delivery and nanomedicine. Thus, a brief outlook on the chemistry of siloxanes prior to the discussion of the current state of the art of siloxane-based imprinted nanomaterials will be provided. Those aspects will be presented in the context of practical applications in various areas of chemistry and medicine. Finally, a brief outlook of future perspectives for the field will be pointed out.
Collapse
|
7
|
Kassem S, Piletsky SS, Yesilkaya H, Gazioglu O, Habtom M, Canfarotta F, Piletska E, Spivey AC, Aboagye EO, Piletsky SA. Assessing the In Vivo Biocompatibility of Molecularly Imprinted Polymer Nanoparticles. Polymers (Basel) 2022; 14:polym14214582. [PMID: 36365575 PMCID: PMC9655879 DOI: 10.3390/polym14214582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Molecularly imprinted polymer nanoparticles (nanoMIPs) are high affinity synthetic receptors which show promise as imaging and therapeutic agents. Comprehensive analysis of the in vivo behaviour of nanoMIPs must be performed before they can be considered for clinical applications. This work reports the solid-phase synthesis of nanoMIPs and an investigation of their biodistribution, clearance and cytotoxicity in a rat model following both intravenous and oral administration. These nanoMIPs were found in each harvested tissue type, including brain tissue, implying their ability to cross the blood-brain barrier. The nanoMIPs were cleared from the body via both faeces and urine. Furthermore, we describe an immunogenicity study in mice, demonstrating that nanoMIPs specific for a cell surface protein showed moderate adjuvant properties, whilst those imprinted for a scrambled peptide showed no such behaviour. Given their ability to access all tissue types and their relatively low cytotoxicity, these results pave the way for in vivo applications of nanoMIPs.
Collapse
Affiliation(s)
- Samr Kassem
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute, Agricultural Research Centre, Giza 12618, Egypt
| | - Stanislav S. Piletsky
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London W12 0BZ, UK
- Correspondence:
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Medhanie Habtom
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| | | | - Elena Piletska
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Alan C. Spivey
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London W12 0BZ, UK
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | | |
Collapse
|