1
|
Li Z, Zheng Z, Li H, Xu D, Li X, Xiang L, Tu S. Review on Rice Husk Biochar as an Adsorbent for Soil and Water Remediation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1524. [PMID: 37050150 PMCID: PMC10096505 DOI: 10.3390/plants12071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Rice husk biochar (RHB) is a low-cost and renewable resource that has been found to be highly effective for the remediation of water and soil environments. Its yield, structure, composition, and physicochemical properties can be modified by changing the parameters of the preparation process, such as the heating rate, pyrolysis temperature, and carrier gas flow rate. Additionally, its specific surface area and functional groups can be modified through physical, chemical, and biological means. Compared to biochar from other feedstocks, RHB performs poorly in solutions with coexisting metal, but can be modified for improved adsorption. In contaminated soils, RHB has been found to be effective in adsorbing heavy metals and organic matter, as well as reducing pollutant availability and enhancing crop growth by regulating soil properties and releasing beneficial elements. However, its effectiveness in complex environments remains uncertain, and further research is needed to fully understand its mechanisms and effectiveness in environmental remediation.
Collapse
Affiliation(s)
- Zheyong Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Zhiwei Zheng
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongcheng Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Dong Xu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Xing Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Luojing Xiang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430072, China; (Z.L.)
- State Key Laboratory of Soil Health Diagnosis and Green Remediation for Environmental Protection, Wuhan 430072, China
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Research Centre for Environment Pollution and Remediation, Wuhan 430070, China
| |
Collapse
|
2
|
Torres-Mendieta R, Nguyen NHA, Guadagnini A, Semerad J, Łukowiec D, Parma P, Yang J, Agnoli S, Sevcu A, Cajthaml T, Cernik M, Amendola V. Growth suppression of bacteria by biofilm deterioration using silver nanoparticles with magnetic doping. NANOSCALE 2022; 14:18143-18156. [PMID: 36449011 DOI: 10.1039/d2nr03902h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Decades of antibiotic use and misuse have generated selective pressure toward the rise of antibiotic-resistant bacteria, which now contaminate our environment and pose a major threat to humanity. According to the evolutionary "Red queen theory", developing new antimicrobial technologies is both urgent and mandatory. While new antibiotics and antibacterial technologies have been developed, most fail to penetrate the biofilm that protects bacteria against external antimicrobial attacks. Hence, new antimicrobial formulations should combine toxicity for bacteria, biofilm permeation ability, biofilm deterioration capability, and tolerability by the organism without renouncing compatibility with a sustainable, low-cost, and scalable production route as well as an acceptable ecological impact after the ineluctable release of the antibacterial compound in the environment. Here, we report on the use of silver nanoparticles (NPs) doped with magnetic elements (Co and Fe) that allow standard silver antibacterial agents to perforate bacterial biofilms through magnetophoretic migration upon the application of an external magnetic field. The method has been proved to be effective in opening micrometric channels and reducing the thicknesses of models of biofilms containing bacteria such as Enterococcus faecalis, Enterobacter cloacae, and Bacillus subtilis. Besides, the NPs increase the membrane lipid peroxidation biomarkers through the formation of reactive oxygen species in E. faecalis, E. cloacae, B. subtilis, and Pseudomonas putida colonies. The NPs are produced using a one-step, scalable, and environmentally low-cost procedure based on laser ablation in a liquid, allowing easy transfer to real-world applications. The antibacterial effectiveness of these magnetic silver NPs may be further optimized by engineering the external magnetic fields and surface conjugation with specific functionalities for biofilm disruption or bactericidal effectiveness.
Collapse
Affiliation(s)
- Rafael Torres-Mendieta
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic.
| | - Nhung H A Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic.
| | - Andrea Guadagnini
- Department of Chemical Sciences, University of Padova, Padova, I-35131 Italy.
| | - Jaroslav Semerad
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Dariusz Łukowiec
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A St., 44-100, Gliwice, Poland
| | - Petr Parma
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic.
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Jijin Yang
- Department of Chemical Sciences, University of Padova, Padova, I-35131 Italy.
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Padova, I-35131 Italy.
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic.
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, Czech Republic
| | - Miroslav Cernik
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic.
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova, I-35131 Italy.
| |
Collapse
|
3
|
Gök G, Kocyigit H, Gök O, Celebi H. The use of raw shrimp shells in the adsorption of highly polluted waters with Co2+. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Ligarda-Samanez CA, Choque-Quispe D, Palomino-Rincón H, Ramos-Pacheco BS, Moscoso-Moscoso E, Huamán-Carrión ML, Peralta-Guevara DE, Obregón-Yupanqui ME, Aroni-Huamán J, Bravo-Franco EY, Palomino-Rincón W, De la Cruz G. Modified Polymeric Biosorbents from Rumex acetosella for the Removal of Heavy Metals in Wastewater. Polymers (Basel) 2022; 14:polym14112191. [PMID: 35683864 PMCID: PMC9183189 DOI: 10.3390/polym14112191] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
The contamination of water resources by effluents from various industries often contains heavy metals, which cause irreversible damage to the environment and health. The objective was to evaluate different biosorbents from the weed Rumex acetosella to remove metal cations in wastewater. Drying, grinding and sieving of the stems was carried out to obtain the biomass, retaining the fractions of 250 to 500 µm and 500 to 750 µm, which served to obtain the biosorbents in natura (unmodified), acidic, alkaline, and mixed. Proximal analysis, PZC, TOC, removal capacity, influence of pH, functional groups, thermal analysis, structural characteristics, adsorption isotherms, and kinetic study were evaluated. The 250 µm mixed treatment was the one that presented the highest removal percentages, mainly due to the OH, NH, -C-H, COOH, and C-O functional groups achieving the removal of up to 96.14% of lead, 36.30% of zinc, 34.10% of cadmium and 32.50% of arsenic. For contact times of 120 min and an optimum pH of 5.0, a loss of cellulose mass of 59% at 328 °C and a change in the surface of the material were also observed, which allowed for obtaining a topography with greater chelating capacity, and the Langmuir and pseudo-second order models were better fitted to the adsorption data. The new biosorbents could be used in wastewater treatment economically and efficiently.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.M.-M.); (M.L.H.-C.)
- Correspondence:
| | - David Choque-Quispe
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (D.E.P.-G.)
| | - Henry Palomino-Rincón
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (H.P.-R.); (B.S.R.-P.); (M.E.O.-Y.); (J.A.-H.)
| | - Betsy S. Ramos-Pacheco
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (H.P.-R.); (B.S.R.-P.); (M.E.O.-Y.); (J.A.-H.)
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.M.-M.); (M.L.H.-C.)
| | - Mary L. Huamán-Carrión
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.M.-M.); (M.L.H.-C.)
| | - Diego E. Peralta-Guevara
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (D.E.P.-G.)
| | - Mirian E. Obregón-Yupanqui
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (H.P.-R.); (B.S.R.-P.); (M.E.O.-Y.); (J.A.-H.)
| | - Jimmy Aroni-Huamán
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (H.P.-R.); (B.S.R.-P.); (M.E.O.-Y.); (J.A.-H.)
| | - Eyner Y. Bravo-Franco
- Faculty of Business Sciences, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Wilbert Palomino-Rincón
- Agricultural and Livestock Engineering, Universidad Nacional San Antonio Abad, Cusco 08000, Peru;
| | - Germán De la Cruz
- Agricultural Science Facultad, Universidad Nacional San Cristobal de Huamanga, Ayacucho 05000, Peru;
| |
Collapse
|