1
|
Jang SK, Song G, Osman A, Park SH, Lin E, Lee E, Sim EJ, Yoon K, Lee SJ, Hwang DS, Yi GR. Monodisperse polyhydroxyalkanoate nanoparticles as self-sticky and bio-resorbable tissue adhesives. J Colloid Interface Sci 2024; 673:647-656. [PMID: 38901355 DOI: 10.1016/j.jcis.2024.06.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Monodisperse nanoparticles of biodegradable polyhydroxyalkanoates (PHAs) polymers, copolymers of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB), are synthesized using a membrane-assisted emulsion encapsulation and evaporation process for biomedical resorbable adhesives. The precise control over the diameter of these PHA particles, ranging from 100 nm to 8 μm, is achieved by adjusting the diameter of emulsion or the PHA concentration. Mechanical properties of the particles can be tailored based on the 3HB to 4HB ratio and molecular weight, primarily influenced by the level of crystallinity. These monodisperse PHA particles in solution serve as adhesives for hydrogel systems, specifically those based on poly(N, N-dimethylacrylamide) (PDMA). Semi-crystalline PHA nanoparticles exhibit stronger adhesion energy than their amorphous counterparts. Due to their self-adhesiveness, adhesion energy increases even when those PHA nanoparticles form multilayers between hydrogels. Furthermore, as they degrade and are resorbed into the body, the PHA nanoparticles demonstrate efficacy in in vivo wound closure, underscoring their considerable impact on biomedical applications.
Collapse
Affiliation(s)
- Soo Kyeong Jang
- Department of Chemical Engineering, Pohang University of Science and Engineering (POSTECH), Pohang 37673, Republic of Korea
| | - Geonho Song
- Department of Chemical Engineering, Pohang University of Science and Engineering (POSTECH), Pohang 37673, Republic of Korea
| | - Asila Osman
- Department of Environmental Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, University of Khartoum, Khartoum 11115, Sudan
| | - Seong Hun Park
- Department of Chemical Engineering, Pohang University of Science and Engineering (POSTECH), Pohang 37673, Republic of Korea
| | - Enhui Lin
- Department of Environmental Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang 37673, Republic of Korea
| | - Eunhye Lee
- CJ CheilJedang Corporation, Suwon 16495, Gyeonggi-do, South Korea
| | - Eun Jung Sim
- CJ CheilJedang Corporation, Suwon 16495, Gyeonggi-do, South Korea
| | - Kichull Yoon
- CJ CheilJedang Corporation, Suwon 16495, Gyeonggi-do, South Korea
| | - Seung Jin Lee
- CJ CheilJedang Corporation, Suwon 16495, Gyeonggi-do, South Korea
| | - Dong Soo Hwang
- Department of Environmental Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang 37673, Republic of Korea.
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Engineering (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
2
|
Musioł M, Rydz J, Janeczek H, Andrzejewski J, Cristea M, Musioł K, Kampik M, Kowalczuk M. (Bio)degradable Biochar Composites of PLA/P(3HB- co-4HB) Commercial Blend for Sustainable Future-Study on Degradation and Electrostatic Properties. Polymers (Basel) 2024; 16:2331. [PMID: 39204551 PMCID: PMC11359726 DOI: 10.3390/polym16162331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Interesting alternatives to expensive biodegradable polymers are their composites with natural fillers. The addition of biochar to a blend of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) was studied, and the resulting materials were evaluated for their properties and changes during degradation. Introducing biochar as a filler brought a noticeable improvement in electrostatic properties. Surface resistivity decreased from 3.80 × 1012 for the sample without biochar to 1.32 × 1012 for the sample with 30% filler content. Degradation tests revealed distinct differences in the degradation profile for composites due to the presence of filler. Composites with a lower biochar content displayed curling crack edges during hydrolytic degradation, and when the filler content reached 20 wt%, PLA loss accelerated. This study suggests that biochar-based composites have potential to be used as sustainable materials with improved properties.
Collapse
Affiliation(s)
- Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (J.R.); (H.J.); (M.K.)
- International Polish-Romanian Research Laboratory ADVAPOL, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Joanna Rydz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (J.R.); (H.J.); (M.K.)
- International Polish-Romanian Research Laboratory ADVAPOL, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (J.R.); (H.J.); (M.K.)
- International Polish-Romanian Research Laboratory ADVAPOL, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Jacek Andrzejewski
- Institute of Materials Technology, Polymer Processing Division, Faculty of Mechanical Engineering, Poznań University of Technology, Piotrowo 3 St., 61-138 Poznań, Poland;
| | - Mariana Cristea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A. Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
- International Polish-Romanian Research Laboratory ADVAPOL, “Petru Poni” Institute of Macromolecular Chemistry, 41-A. Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Krzysztof Musioł
- Department of Measurement Science, Electronics and Control, Silesian University of Technology (SUT), Akademicka 10 St., 44-100 Gliwice, Poland; (K.M.); (M.K.)
| | - Marian Kampik
- Department of Measurement Science, Electronics and Control, Silesian University of Technology (SUT), Akademicka 10 St., 44-100 Gliwice, Poland; (K.M.); (M.K.)
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (J.R.); (H.J.); (M.K.)
- International Polish-Romanian Research Laboratory ADVAPOL, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV 11 LY, UK
| |
Collapse
|
3
|
Kopf S, Root A, Heinmaa I, Aristéia de Lima J, Åkesson D, Skrifvars M. Production and Characterization of Melt-Spun Poly(3-hydroxybutyrate)/Poly(3-hydroxybutyrate- co-4-hydroxybutyrate) Blend Monofilaments. ACS OMEGA 2024; 9:27415-27427. [PMID: 38947777 PMCID: PMC11209910 DOI: 10.1021/acsomega.4c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
We investigated the melt-spinning potential of a poly(3-hydroxybutyrate)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blend using a piston spinning machine with two different spinneret diameters (0.2 and 0.5 mm). Results from the differential scanning calorimetry, dynamic mechanical thermal analysis, and tensile testing showed distinct filament properties depending on the monofilaments' cross-sectional area. Finer filaments possessed different melting behaviors compared to the coarser filaments and the neat polymer, indicating the formation of a different type of polymer crystal. Additionally, the mechanical properties of the finer filament (tensile strength: 21.5 MPa and elongation at break: 341%) differed markedly from the coarser filament (tensile strength: 11.7 MPa, elongation at break: 12.3%). The hydrolytic stability of the filaments was evaluated for 7 weeks in a phosphate-buffered saline solution and showed a considerably reduced elongation at break of the thinner filaments. Overall, the results indicate considerable potential for further filament improvements to facilitate textile processing.
Collapse
Affiliation(s)
- Sabrina Kopf
- Swedish
Centre for Resource Recovery, Faculty of Textiles, Engineering and
Business, University of Borås, 501 90 Borås, Sweden
| | - Andrew Root
- MagSol, Tuhkanummenkuja 2, 00970 Helsinki, Finland
| | - Ivo Heinmaa
- National
Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Juliana Aristéia de Lima
- Swedish
Centre for Resource Recovery, Faculty of Textiles, Engineering and
Business, University of Borås, 501 90 Borås, Sweden
- Department
of Polymer, Fibre and Composite, RISE Research
Institutes of Sweden, 504
62 Borås, Sweden
| | - Dan Åkesson
- Swedish
Centre for Resource Recovery, Faculty of Textiles, Engineering and
Business, University of Borås, 501 90 Borås, Sweden
| | - Mikael Skrifvars
- Swedish
Centre for Resource Recovery, Faculty of Textiles, Engineering and
Business, University of Borås, 501 90 Borås, Sweden
| |
Collapse
|
4
|
Chatrath S, Alotaibi M, Barry CF. Performance of Recycled Polylactic Acid/Amorphous Polyhydroxyalkanoate Blends. Polymers (Basel) 2024; 16:1230. [PMID: 38732699 PMCID: PMC11085229 DOI: 10.3390/polym16091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Blends of polylactic acid (PLA) with amorphous polyhydroxyalkanoate (aPHA) are less brittle than neat PLA, thus enabling their use as biodegradable packaging. This work investigated the impact of recycling on the properties of neat PLA and PLA/aPHA blends with 90 and 75 wt. % PLA. After the materials were subjected to five heat histories in a single-screw extruder, the mechanical, rheological, and thermal properties were measured. All recycled compounds with 100% PLA and 75% PLA had similar decomposition behavior, whereas the decomposition temperatures for the blends with 90% PLA decreased with each additional heat cycle. The glass transition and melting temperatures were not impacted by reprocessing, but the crystallinity increased with more heat cycles. The complex viscosity of the reprocessed PLA and PLA/aPHA blends was much lower than for the neat PLA and increasing the number of heat cycles produced smaller reductions in the complex viscosity of 100% PLA and the blend with 90% PLA; no change in complex viscosity was observed for blends with 75% PLA exposed to 2 to 5 heat cycles. The tensile properties were not affected by reprocessing, whereas the impact strength for the 75% PLA blend decreased with reprocessing. These properties suggest that users will be able to incorporate scrap into the neat resin for thermoformed packaging.
Collapse
Affiliation(s)
| | | | - Carol Forance Barry
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01879, USA
| |
Collapse
|
5
|
Bhatia SK. Microbial Biopolymers: Trends in Synthesis, Modification, and Applications. Polymers (Basel) 2023; 15:polym15061364. [PMID: 36987144 PMCID: PMC10051619 DOI: 10.3390/polym15061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Microbes can act as a factory for the conversion of a variety of carbon and nitrogen sources into diverse kinds of intracellular and extracellular biopolymers, including polyhydroxyalkanoates (PHA) and exopolysaccharides (EPS), under different stress conditions [...].
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Zhang T, Jang Y, Jung M, Lee E, Kang HJ. Isothermal crystallization of poly[3-hydroxybutyrate-co-4-hydroxybutyrate] mixtures. Macromol Res 2023. [DOI: 10.1007/s13233-023-00115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Min Song H, Chan Joo J, Hyun Lim S, Jin Lim H, Lee S, Jae Park S. Production of polyhydroxyalkanoates containing monomers conferring amorphous and elastomeric properties from renewable resources: Current status and future perspectives. BIORESOURCE TECHNOLOGY 2022; 366:128114. [PMID: 36283671 DOI: 10.1016/j.biortech.2022.128114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Petrochemical-based plastics cause environmental pollution and threaten humans and ecosystems. Polyhydroxyalkanoate (PHA) is considered a promising alternative to nondegradable plastics since it is eco-friendly and biodegradable polymer having similar properties to conventional plastics. PHA's material properties are generally determined by composition and type of monomers in PHA. PHA can be designed in tailor-made manner for their suitable application areas. Among many monomers in PHAs, ω-hydroxalkanoates such as 3-hydroxypropionate (3HP), 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV), and 6-hydroxyhexanoate (6HHx) and medium-chain-length 3-hydroxyalkanoate such as 3-hydroxyhexanoate (3HHx) and 4-hydroxyvalerate (4HV), have been examined as potential monomers able to confer amorphous and elastomer properties when these are incorporated as comonomer in poly(3-hydroxybutyrate) copolymer that has 3HB as main monomer along with comonomers in different monomer fraction. Herein, recent advances in production of PHAs designed to have amorphous and elastomeric properties from renewable sources such as lignocellulose, levulinic acid, crude glycerol, and waste oil are discussed.
Collapse
Affiliation(s)
- Hye Min Song
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Siseon Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|