1
|
Grilc NK, Kristl J, Zupančič Š. Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria? Colloids Surf B Biointerfaces 2025; 245:114329. [PMID: 39486375 DOI: 10.1016/j.colsurfb.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
2
|
Shiue SJ, Wu MS, Chiang YH, Lin HY. Bacteriophage-cocktail hydrogel dressing to prevent multiple bacterial infections and heal diabetic ulcers in mice. J Biomed Mater Res A 2024; 112:1846-1859. [PMID: 38706446 DOI: 10.1002/jbm.a.37728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Bacteriophage (phage) has been reported to reduce the bacterial infection in delayed-healing wounds and, as a result, aiding in the healing of said wounds. In this study we investigated whether the presence of phage itself could help repair delayed-healing wounds in diabetic mice. Three strains of phage that target Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa were used. To prevent the phage liquid from running off the wound, the mixture of phage (phage-cocktail) was encapsulated in a porous hydrogel dressing made with three-dimensional printing. The phage-cocktail dressing was tested for its phage preservation and release efficacy, bacterial reduction, cytotoxicity with 3T3 fibroblast, and performance in repairing a sterile full-thickness skin wound in diabetic mice. The phage-cocktail dressing released 1.7%-5.7% of the phages embedded in 24 h, and reduced between 37%-79% of the surface bacteria compared with the blank dressing (p <.05). The phage-cocktail dressing exhibited no sign of cytotoxicity after 3 days (p <.05). In vivo studies showed that 14 days after incision, the full-thickness wound treated with a phage-cocktail dressing had a higher wound healing ratio compared with the blank dressing and control (p <.01). Histological analysis showed that the structure of the skin layers in the group treated with phage-cocktail dressing was restored in an orderly fashion. Compared with the blank dressing and control, the repaired tissue in the phage-cocktail dressing group had new capillary vessels and no sign of inflammation in its dermis, and its epidermis had a higher degree of re-epithelialization (p <.05). The slow-released phage has demonstrated positive effects in repairing diabetic skin wounds.
Collapse
Affiliation(s)
- Sheng-Jie Shiue
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsien Chiang
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Hsin-Yi Lin
- Graduate Institute of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
3
|
Mohan N, Bosco K, Peter A, Abhitha K, Bhat SG. Bacteriophage entrapment strategies for the treatment of chronic wound infections: a comprehensive review. Arch Microbiol 2024; 206:443. [PMID: 39443305 DOI: 10.1007/s00203-024-04168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
The growing threat of antimicrobial resistance has made the quest for antibiotic alternatives or synergists one of the most pressing priorities of the 21st century. The emergence of multidrug-resistance in most of the common wound pathogens has amplified the risk of antibiotic-resistant wound infections. Bacteriophages, with their self-replicating ability and targeted specificity, can act as suitable antibiotic alternatives. Nevertheless, targeted delivery of phages to infection sites remains a crucial issue, specifically in the case of topical infections. Hence, different phage delivery systems have been studied in recent years. However, there have been no recent reviews of phage delivery systems focusing exclusively on phage application on wounds. This review provides a compendium of all the major delivery systems that have been used to deliver phages to wound infection sites. Special focus has also been awarded to phage-embedded hydrogels with a discussion on the different aspects to be considered during their preparation.
Collapse
Affiliation(s)
- Nivedya Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - Kiran Bosco
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Center for Infectious Diseases and Microbiology, Westmead, NSW, Australia
| | - Anmiya Peter
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - K Abhitha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India.
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India.
| |
Collapse
|
4
|
Suchithra KV, Hameed A, Surya S, Mahammad S, Arun AB. Dual phage-incorporated electrospun polyvinyl alcohol-eudragit nanofiber matrix for rapid healing of diabetic wound infected by Pseudomonas aeruginosa and Staphylococcus aureus. Drug Deliv Transl Res 2024:10.1007/s13346-024-01660-4. [PMID: 38980574 DOI: 10.1007/s13346-024-01660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Diabetic wound healing remains a healthcare challenge due to co-occurring multidrug-resistant (MDR) bacterial infections and the constraints associated with sustained drug delivery. Here, we integrate two new species of phages designated as PseuPha1 and RuSa1 respectively lysing multiple clinical MDR strains of P. aeruginosa and S. aureus into a novel polyvinyl alcohol-eudragit (PVA-EU†) nanofiber matrix through electrospinning for rapid diabetic wound healing. PVA-EU† evaluated for characteristic changes that occurred due to electrospinning and subjected to elution, stability and antibacterial assays. The biocompatibility and wound healing ability of PVA-EU† were assessed through mouse fibroblast cell line NIH3T3, followed by validation through diabetic mice excision wound co-infected with P. aeruginosa and S. aureus. The electrospinning resulted in the incorporation of ~ 75% active phages at PVA-EU†, which were stable at 25 °C for 30 days and at 4 °C for 90 days. PVA-EU† showed sustained release of phages for 18 h and confirmed to be detrimental to both mono- and mixed-cultures of target pathogens. The antibacterial activity of PVA-EU† remained unaltered in the presence of high amounts of glucose, whereas alkaline pH promoted the activity. The matrix exerted no cytotoxicity on NIH3T3, but showed significant (p < 0.0001) wound healing in vitro and the process was rapid as validated through a diabetic mice model. The sustained release, quick wound closure, declined abundance of target MDR bacteria in situ and histopathological signs of recovery corroborated the therapeutic efficacy of PVA-EU†. Taken together, our data signify the potential application of PVA-EU† in the rapid treatment of diabetic wounds without the aid of antibiotics.
Collapse
Affiliation(s)
- Kokkarambath Vannadil Suchithra
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore-575018, India
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore-575018, India.
| | - Suprith Surya
- Advanced Surgical Skill Enhancement Division (ASSEND), Yenepoya (Deemed to Be University), Deralakatte, Mangalore-575018, India
| | - Sajida Mahammad
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore-575018, India
| | - Ananthapadmanabha Bhagwath Arun
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore-575018, India.
- Yenepoya Institute of Arts, Science, Commerce and Management, Balmatta, Mangalore-575002, India.
| |
Collapse
|
5
|
Rahman MM, Kotturi H, Nikfarjam S, Bhargava K, Ahsan N, Khandaker M. Antimicrobial Activity of Polycaprolactone Nanofiber Coated with Lavender and Neem Oil Nanoemulsions against Airborne Bacteria. MEMBRANES 2024; 14:36. [PMID: 38392663 PMCID: PMC10890609 DOI: 10.3390/membranes14020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The development of efficient, eco-friendly antimicrobial agents for air purification and disinfection addresses public health issues connected to preventing airborne pathogens. Herein, the antimicrobial activity of a nanoemulsion (control, 5%, 10%, and 15%) containing neem and lavender oils with polycaprolactone (PCL) was investigated against airborne bacteria, including Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. Various parameters such as the physicochemical properties of the nanoemulsion, pH, droplet size, the polydispersity index (PDI), the minimum inhibitory concentration (MIC), the minimum bacterial concentration (MBC), and the color measurement of the emulsion have been evaluated and optimized. Our results showed that the antimicrobial activity of PCL combined with neem and lavender oil was found to be the highest MIC and MBC against all tested bacteria. The droplet sizes for lavender oil are 21.86-115.15 nm, the droplet sizes for neem oil are 23.92-119.15 nm, and their combination is 25.97-50.22 nm. The range of pH and viscosity of nanoemulsions of various concentrations was found to be 5.8 to 6.6 pH and 0.372 to 2.101 cP. This study highlights the potential of nanotechnology in harnessing the antimicrobial properties of natural essential oils, paving the way for innovative and sustainable solutions in the fight against bacterial contamination.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Department of Human Environmental Sciences, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Hari Kotturi
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Sadegh Nikfarjam
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Kanika Bhargava
- Department of Human Environmental Sciences, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK 73019, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | - Morshed Khandaker
- Nanobiology Laboratory, School of Engineering, University of Central Oklahoma, Edmond, OK 73034, USA
| |
Collapse
|
6
|
Ferreira CAM, Guerreiro SFC, Padrão T, Alves NMF, Dias JR. Antimicrobial Nanofibers to Fight Multidrug-Resistant Bacteria. NANOTECHNOLOGY BASED STRATEGIES FOR COMBATING ANTIMICROBIAL RESISTANCE 2024:533-579. [DOI: 10.1007/978-981-97-2023-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Patil R, Dehari D, Chaudhuri A, Kumar DN, Kumar D, Singh S, Nath G, Agrawal AK. Recent advancements in nanotechnology-based bacteriophage delivery strategies against bacterial ocular infections. Microbiol Res 2023; 273:127413. [PMID: 37216845 DOI: 10.1016/j.micres.2023.127413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance is growing as a critical challenge in a variety of disease conditions including ocular infections leading to disastrous effects on the human eyes. Staphylococcus aureus (S. aureus) mediated ocular infections are very common affecting different parts of the eye viz. vitreous chamber, conjunctiva, cornea, anterior and posterior chambers, tear duct, and eyelids. Blepharitis, dacryocystitis, conjunctivitis, keratitis, endophthalmitis, and orbital cellulitis are some of the commonly known ocular infections caused by S. aureus. Some of these infections are so fatal that they could cause bilateral blindness like panophthalmitis and orbital cellulitis, which is caused by methicillin-resistant S. aureus (MRSA) and vancomycin-resistance S. aureus (VRSA). The treatment of S. aureus infections with known antibiotics is becoming gradually difficult because of the development of resistance against multiple antibiotics. Apart from the different combinations and formulation strategies, bacteriophage therapy is growing as an effective alternative to treat such infections. Although the superiority of bacteriophage therapy is well established, yet physical factors (high temperatures, acidic pH, UV-rays, and ionic strength) and pharmaceutical barriers (poor stability, low in-vivo retention, controlled and targeted delivery, immune system neutralization, etc.) have the greatest influence on the viability of phage virions (also phage proteins). A variety of Nanotechnology based formulations such as polymeric nanoparticles, liposomes, dendrimers, nanoemulsions, and nanofibres have been recently reported to overcome the above-mentioned obstacles. In this review, we have compiled all these recent reports and discussed bacteriophage-based nanoformulations techniques for the successful treatment of ocular infections caused by multidrug-resistant S. aureus and other bacteria.
Collapse
Affiliation(s)
- Rohit Patil
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India; Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India.
| |
Collapse
|