1
|
Awasthi S, Pandey SK, Shwetha HJ, Nehal, Selvaraj S. Tough, durable and strongly bonded self-healing cartilage-mimicking noncovalently assembled hydrogel nanostructures: the interplay between experiment and theory. NANOSCALE 2025; 17:1616-1643. [PMID: 39635820 DOI: 10.1039/d4nr03322a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
High-strength, strongly bonded and self-healing materials are of great interest for several applications; however, the experimental and in silico design of all such properties in a single material is challenging. In the present work, inspired by cartilage tissue, polyacrylamide (PAM)-based tough and durable dimer (PAM-Ag and PAM-BNOH) and trimer (PAM-Ag-BNOH) nanocomposites were synthesized by encapsulating silver (Ag) and hydroxylated hexagonal boron nitride (BNOH). Strong interfacial interaction was achieved by introducing (computational modelling and DFT approaches) noncovalent bonds in the dimer and trimer nanohybrids. The fabricated PAM-Ag-BN nanocomposite showed higher mechanical strength (0.31 MPa compressive strength and 0.29 MPa Young's modulus) than dimer hydrogel composites. The long-term durability of the hydrogel samples was tested by electrochemical testing of hydrogels in a simulated body fluid, and a higher corrosion resistance (icorr = 2.65 × 10-5 A cm-2) was obtained for trimer hydrogels. Moreover, the supramolecular cross-linked assembly of PAM-Ag-BN perfectly exhibited bioactivities, including bone formation ability, self-healing performance, restricted cytotoxicity, and anti-microbial activity. The synergistic effect of nano- and micron-sized particles in PAM-Ag-BN ensued in strong interfacial interlocking through the formation of hydrogen bonding between Ag, BNOH and PAM. Therefore, the fabricated tough hydrogel composite can be a leading biomaterial for soft tissue (articular cartilage) regeneration. The present research opens new directions for developing smart self-healing nanocomposites, which are extensively used in cartilage tissue engineering.
Collapse
Affiliation(s)
- Shikha Awasthi
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur - 303007, Rajasthan, India.
| | - Sarvesh Kumar Pandey
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal - 462003, Madhya Pradesh, India
| | - Hulikere Jagdish Shwetha
- Department of Materials Engineering, Indian Institute of Science Bengaluru, Bengaluru - 560012, Karnataka, India
| | - Nehal
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur - 303007, Rajasthan, India.
| | - S Selvaraj
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai - 602105, Tamil Nadu, India
| |
Collapse
|
2
|
Voicu SI, Vasile E, Palla-Papavlu A, Oprea R, Ionita M, Pandele AM. RUO 2 nanoparticle-decorated MWCNTS synthesized using a sonochemical method as reinforcing agents for PEI composite membranes. RSC Adv 2024; 14:39550-39558. [PMID: 39687339 PMCID: PMC11647773 DOI: 10.1039/d4ra07606k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
This work presents a new and facile synthesis approach for multiwalled carbon nanotubes (MWCNTs) decorated with ruthenium oxide (RuO2) nanoparticles using a simple and efficient sonochemical method. The strong interaction and homogenous distribution of RuO2 nanoparticles on the surface of MWCNTs were revealed by Raman spectroscopy and transmission electron microscopy. The presence of metal oxide nanoparticles anchored onto the surface of MWCNTs was further confirmed by X-ray diffraction and energy-dispersive X-ray analysis. Furthermore, the chemical state of the MWCNTs before and after decoration with RuO2 was revealed by X-ray photoelectron spectroscopy. Scanning electron microscopy illustrated that the decoration process did not induce any modification on the morphology of the surface of MWCNTs. The percentage of RuO2 nanoparticles anchored onto the MWCNT surface was determined by thermogravimetric analysis, where 15% could be calculated considering the weight loss. Furthermore, both MWCNTs and decorated MWCNTs with RuO2 nanoparticles were used as nanofillers to develop some composite membranes using polyetherimine as polymer matrices. The morphological and structural properties of the membranes were characterized by SEM and XRD. The mechanical properties of the composite membranes, contact angle and antimicrobial properties using Escherichia coli and Staphylococcus aureus were also studied.
Collapse
Affiliation(s)
- S I Voicu
- Advanced Polymers Materials Group, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
| | - E Vasile
- National University of Science and Technology POLITEHNICA Bucharest Splaiul Independentei 313 060042 Bucharest Romania
| | - A Palla-Papavlu
- National Institute for Laser, Plasma and Radiation Physics Str. Atomistilor 409 Magurele 077125 Romania
| | - R Oprea
- Advanced Polymers Materials Group, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
| | - M Ionita
- Advanced Polymers Materials Group, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
| | - A M Pandele
- Advanced Polymers Materials Group, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology POLITEHNICA Bucharest 011061 Bucharest Romania
| |
Collapse
|
3
|
Suslova EV, Shashurin DA, Maslakov KI, Kupreenko SY, Luneva TO, Medvedev OS, Chelkov GA. Composite Contrast Enhancement of Hydrogel-Based Implants for Photon-Counting Computed Tomography Studies. Gels 2024; 10:807. [PMID: 39727565 DOI: 10.3390/gels10120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Hydrogels have a wide range of medical applications, including use within implantable systems. However, when used in implants, their visibility under conventional medical imaging techniques is limited, creating safety risks for patients. In the current work, we assessed the possibility of enhancing hydrogels using Ln-based contrasting agents to facilitate their visualization in photon-counting computed tomography (PCCT). The contrast enhancement of gelatin, polyacrylamide (PAM), and silicone shells of implants was assessed. A novel synthetic route for producing cross-linked nanosized Ln2O3 with polyacrylamide was proposed and discussed in detail. Several prototypes of silicone implants, including silicone shell and gelatin or PAM filling with different combinations of contrasting agents, were produced and assessed in phantom PCCT studies.
Collapse
Affiliation(s)
- Evgeniya V Suslova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Denis A Shashurin
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave. 27 Bld. 10, 119991 Moscow, Russia
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Stepan Yu Kupreenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Tatyana O Luneva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Oleg S Medvedev
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave. 27 Bld. 10, 119991 Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Georgy A Chelkov
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia
| |
Collapse
|
4
|
Li Y, Lu J, Shi J, Zhang L, Mu H, Cui T. Carboxymethyl chitosan nanoparticle-modulated cationic hydrogels doped with copper ions for combating bacteria and facilitating wound healing. Front Bioeng Biotechnol 2024; 12:1429771. [PMID: 39372435 PMCID: PMC11449867 DOI: 10.3389/fbioe.2024.1429771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
The simultaneous administration of antibacterial treatment and acceleration of tissue regeneration are crucial for the effective healing of infected wounds. In this work, we developed a facile hydrogel (PCC hydrogel) through coordination and hydrogen interactions by polymerizing acrylamide monomers in the presence of carboxymethyl chitosan nanoparticles and copper ions. The prepared PCC hydrogel demonstrated effective bacterial capture from wound exudation and exhibited a potent bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Furthermore, slow release of copper ions from the hydrogel facilitated wound healing by promoting cell migration, collagen deposition and angiogenesis. Additionally, the PCC hydrogel possessed excellent biocompatibility and hemostatic properties. The practical effectiveness of PCC hydrogel in addressing bacterial infections and facilitating wound healing was verified using a mouse model of MRSA-induced wound infections. Overall, this work presents a simple yet efficient multifunctional hydrogel platform that integrates antibacterial activity, promotion of wound healing, and hemostasis for managing bacteria-associated wounds.
Collapse
Affiliation(s)
- Yaqin Li
- Xinjiang Xinhe Zhitong Technology Service Co. Ltd., Urumqi, China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianping Lu
- Xinjiang Xinhe Zhitong Biotechnology Co. Ltd., Urumqi, China
| | - Jingru Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingjiao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Cui
- Karamay Central Hospital of Xinjiang, Karamay, China
| |
Collapse
|
5
|
Calotă R, Pop O, Bode F, Croitoru C, Serafim A, Bărbulescu A, Damian C, Tefas L. A Novel Concept of Nano-Enhanced Phase Change Material. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4268. [PMID: 39274659 PMCID: PMC11396154 DOI: 10.3390/ma17174268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
In the actual context of growing concerns over sustainability and energy efficiency, Phase Change Materials (PCMs) have gained attention as promising solutions for enhancing energy storage and release efficiency. On another hand, materials based on graphene oxide (GO) have proven antibacterial activity, biocompatibility, efficiency in microbial growth inhibition, and pollutant removal. Integrating nanoparticles into PCMs and creating Nano-Enhanced Phase Change Materials (NEPCMs) have opened new horizons for optimizing the performance of these systems and sustainable development. The key objective of this work is to gain insight into NECPMs, which are used in solar wall systems to enhance solar energy storage. Paraffin RT31 was mixed with Cu nanoparticles, graphene oxide (GO), and Cu-decorated GO (Cu@GO) at loading ratios ranging from 1% to 4% (w/w nanoparticles with respect to RT31). The compositions were characterized through Differential Scanning Calorimetry (DSC) and rheology tests. The decoration of the carbon-based nanoparticles was performed using the ultrasonication procedure, and the decoration efficiency was confirmed through X-ray Photoelectron Spectroscopy (XPS). The rheologic measurements were performed to correlate the flow behavior of the NEPCM with their composition at various temperatures. The study methodically investigated these composites' latent heat values, phase change peak temperatures, and solidification phase change temperatures. Compared to pure paraffin, the solidification of the formulations obtained using Cu@GO exhibits the largest increase in latent heat, with a 12.07% growth at a concentration of 2%. Additionally, at a 4% concentration of NEPCM, the largest increase in thermal conductivity was attained, namely 12.5%.
Collapse
Affiliation(s)
- Răzvan Calotă
- CAMBI Research Centre, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Bd., 021414 Bucharest, Romania
| | - Octavian Pop
- Faculty of Building Services, Technical University of Cluj-Napoca, 103-105 Muncii Bd., 400461 Cluj-Napoca, Romania
| | - Florin Bode
- AtFlow Research Centre, Technical University of Cluj-Napoca, 103-105. Muncii Bd., 400461 Cluj-Napoca, Romania
| | - Cristiana Croitoru
- CAMBI Research Centre, Technical University of Civil Engineering Bucharest, 66 Pache Protopopescu Bd., 021414 Bucharest, Romania
| | - Andrada Serafim
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Alina Bărbulescu
- Department of Civil Engineering, Transilvania University of Brașov, 5 Turnului Str., 500152 Braşov, Romania
| | - Celina Damian
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Lucia Tefas
- Faculty of Pharmacy, luliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Str., 400102 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Sun J, Luo T, Zhao M, Zhang L, Zhao Z, Yu T, Yan Y. Hydrogels and Aerogels for Versatile Photo-/Electro-Chemical and Energy-Related Applications. Molecules 2024; 29:3883. [PMID: 39202962 PMCID: PMC11357016 DOI: 10.3390/molecules29163883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
The development of photo-/electro-chemical and flexible electronics has stimulated research in catalysis, informatics, biomedicine, energy conversion, and storage applications. Gels (e.g., aerogel, hydrogel) comprise a range of polymers with three-dimensional (3D) network structures, where hydrophilic polyacrylamide, polyvinyl alcohol, copolymers, and hydroxides are the most widely studied for hydrogels, whereas 3D graphene, carbon, organic, and inorganic networks are widely studied for aerogels. Encapsulation of functional species with hydrogel building blocks can modify the optoelectronic, physicochemical, and mechanical properties. In addition, aerogels are a set of nanoporous or microporous 3D networks that bridge the macro- and nano-world. Different architectures modulate properties and have been adopted as a backbone substrate, enriching active sites and surface areas for photo-/electro-chemical energy conversion and storage applications. Fabrication via sol-gel processes, module assembly, and template routes have responded to professionalized features and enhanced performance. This review presents the most studied hydrogel materials, the classification of aerogel materials, and their applications in flexible sensors, batteries, supercapacitors, catalysis, biomedical, thermal insulation, etc.
Collapse
Affiliation(s)
- Jiana Sun
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| | - Taigang Luo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| | - Mengmeng Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| | - Lin Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| | - Zhengping Zhao
- Zhijiang College, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| | - Yibo Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China (T.Y.)
| |
Collapse
|
7
|
Stavarache C, Ghebaur A, Serafim A, Vlăsceanu GM, Vasile E, Gârea SA, Iovu H. Fabrication of k-Carrageenan/Alginate/Carboxymethyl Cellulose basedScaffolds via 3D Printing for Potential Biomedical Applications. Polymers (Basel) 2024; 16:1592. [PMID: 38891538 PMCID: PMC11174997 DOI: 10.3390/polym16111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Three-dimensional (3D) printing technology was able to generate great attention because of its unique methodology and for its major potential to manufacture detailed and customizable scaffolds in terms of size, shape and pore structure in fields like medicine, pharmaceutics and food. This study aims to fabricate an ink entirely composed of natural polymers, alginate, k-carrageenan and carboxymethyl cellulose (AkCMC). Extrusion-based 3D printing was used to obtain scaffolds based on a crosslinked interpenetrating polymer network from the alginate, k-carrageenan, carboxymethyl cellulose and glutaraldehide formulation using CaCl2, KCl and glutaraldehyde in various concentrations of acetic acid. The stabile bonding of the crosslinked scaffolds was assessed using infrared spectroscopy (FT-IR) as well as swelling, degradation and mechanical investigations. Moreover, morphology analysis (µCT and SEM) confirmed the 3D printed samples' porous structure. In the AkCMC-GA objects crosslinked with the biggest acetic acid concentration, the values of pores and walls are the highest, at 3.9 × 10-2 µm-1. Additionally, this research proves the encapsulation of vitamin B1 via FT-IR and UV-Vis spectroscopy. The highest encapsulation efficiency of vitamin B1 was registered for the AkCMC-GA samples crosslinked with the maximum acetic acid concentration. The kinetic release of the vitamin was evaluated by UV-Vis spectroscopy. Based on the results of these experiments, 3D printed constructs using AkCMC-GA ink could be used for soft tissue engineering applications and also for vitamin B1 encapsulation.
Collapse
Affiliation(s)
- Cristina Stavarache
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
- C.D. Nenițescu” Institute of Organic and Supramolecular Chemistry, 202-B Spl. Independentei, 060023 Bucharest, Romania
| | - Adi Ghebaur
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
| | - Andrada Serafim
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
| | - George Mihail Vlăsceanu
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
- Faculty of Medical Engineering, National University for Science and Technology Politehnica Bucuresti, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Eugeniu Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Sorina Alexandra Gârea
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
| | - Horia Iovu
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
8
|
Ortega MA, De Leon-Oliva D, Boaru DL, Fraile-Martinez O, García-Montero C, Diaz R, Coca S, Barrena-Blázquez S, Bujan J, García-Honduvilla N, Saez MA, Álvarez-Mon M, Saz JV. Unraveling the New Perspectives on Antimicrobial Hydrogels: State-of-the-Art and Translational Applications. Gels 2023; 9:617. [PMID: 37623072 PMCID: PMC10453485 DOI: 10.3390/gels9080617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The growing impact of infections and the rapid emergence of antibiotic resistance represent a public health concern worldwide. The exponential development in the field of biomaterials and its multiple applications can offer a solution to the problems that derive from these situations. In this sense, antimicrobial hydrogels represent a promising opportunity with multiple translational expectations in the medical management of infectious diseases due to their unique physicochemical and biological properties as well as for drug delivery in specific areas. Hydrogels are three-dimensional cross-linked networks of hydrophilic polymers that can absorb and retain large amounts of water or biological fluids. Moreover, antimicrobial hydrogels (AMH) present good biocompatibility, low toxicity, availability, viscoelasticity, biodegradability, and antimicrobial properties. In the present review, we collect and discuss the most promising strategies in the development of AMH, which are divided into hydrogels with inherent antimicrobial activity and antimicrobial agent-loaded hydrogels based on their composition. Then, we present an overview of the main translational applications: wound healing, tissue engineering and regeneration, drug delivery systems, contact lenses, 3D printing, biosensing, and water purification.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (S.C.); (J.B.); (N.G.-H.); (M.A.S.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
9
|
Reys LL, Silva SS, Soares da Costa D, Rodrigues LC, Reis RL, Silva TH. Building Fucoidan/Agarose-Based Hydrogels as a Platform for the Development of Therapeutic Approaches against Diabetes. Molecules 2023; 28:molecules28114523. [PMID: 37298999 DOI: 10.3390/molecules28114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Current management for diabetes has stimulated the development of versatile 3D-based hydrogels as in vitro platforms for insulin release and as support for the encapsulation of pancreatic cells and islets of Langerhans. This work aimed to create agarose/fucoidan hydrogels to encapsulate pancreatic cells as a potential biomaterial for diabetes therapeutics. The hydrogels were produced by combining fucoidan (Fu) and agarose (Aga), marine polysaccharides derived from the cell wall of brown and red seaweeds, respectively, and a thermal gelation process. The agarose/fucoidan (AgaFu) blended hydrogels were obtained by dissolving Aga in 3 or 5 wt % Fu aqueous solutions to obtain different proportions (4:10; 5:10, and 7:10 wt). The rheological tests on hydrogels revealed a non-Newtonian and viscoelastic behavior, while the characterization confirmed the presence of the two polymers in the structure of the hydrogels. In addition, the mechanical behavior showed that increasing Aga concentrations resulted in hydrogels with higher Young's modulus. Further, the ability of the developed materials to sustain the viability of human pancreatic cells was assessed by encapsulation of the 1.1B4HP cell line for up to 7 days. The biological assessment of the hydrogels revealed that cultured pancreatic beta cells tended to self-organize and form pseudo-islets during the period studied.
Collapse
Affiliation(s)
- Lara L Reys
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Simone S Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Luísa C Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Serafim A, Voicu SI. Scaffolds and Surfaces with Biomedical Applications. Polymers (Basel) 2023; 15:polym15092126. [PMID: 37177270 PMCID: PMC10180603 DOI: 10.3390/polym15092126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The engineering of scaffolds and surfaces with enhanced properties for biomedical applications represents an ever-expanding field of research that is continuously gaining momentum [...].
Collapse
Affiliation(s)
- Andrada Serafim
- Advanced Polymers Materials Group, University Politehnica of Bucharest, Gheorghe Polizu Str. 1-7, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Advanced Polymers Materials Group, University Politehnica of Bucharest, Gheorghe Polizu Str. 1-7, 011061 Bucharest, Romania
| |
Collapse
|