1
|
Adeboye A, Onyeaka H, Al-Sharify Z, Nnaji N. Understanding the Influence of Rheology on Biofilm Adhesion and Implication for Food Safety. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:2208472. [PMID: 39781092 PMCID: PMC11707067 DOI: 10.1155/ijfo/2208472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025]
Abstract
Understanding biofilm rheology is crucial for industrial and domestic food safety practices. This comprehensive review addresses the knowledge gap on the rheology of biofilm. Specifically, the review explores the influence of fluid flow, shear stress, and substrate properties on the initiation, structure, and functionality of biofilms, as essential implications for food safety. The viscosity and shear-thinning characteristics of non-Newtonian fluids may impact the attachment and detachment dynamics of biofilms, influencing their stability and resilience under different flow conditions. The discussion spans multiple facets, including the role of extracellular polymeric substances (EPSs) in biofilm formation, the impact of rheological attributes of biofilm on their adhesion to surfaces, and the influence of shear forces between biofilms and substrate's surface characteristics on biofilm stability. Analytical techniques, encompassing rheometry, microscopy, and molecular biology approaches, are scrutinized for their contributions to understanding these interactions. The paper delves into the implications for the food industry, highlighting potential risks associated with biofilm formation and proposing strategies for effective control and prevention. Future research directions and the integration of rheological considerations into food safety regulations are underscored as pivotal steps in mitigating biofilm-related risks. The synthesis of microbiology, materials science, and engineering perspectives offers a multidimensional exploration of rheology-biofilm interactions, laying the groundwork for informed interventions in diverse industrial settings.
Collapse
Affiliation(s)
- Adedola Adeboye
- African Food Research Network, Pretoria 0002, Gauteng, South Africa
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Zainab Al-Sharify
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B152TT, UK
- Pharmacy Department, Al Hikma University College, Baghdad, Iraq
- Department of Environmental Engineering, College of Engineering, Al-Mustansiriyah University, Baghdad, Iraq
| | - Nnabueze Nnaji
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| |
Collapse
|
2
|
Li J, Yang H, Cai Y, Gu R, Chen Y, Wang Y, Dong Y, Zhao Q. Ag quantum dots-doped poly (vinyl alcohol)/chitosan hydrogel coatings to prevent catheter-associated urinary tract infections. Int J Biol Macromol 2024; 282:136405. [PMID: 39423980 DOI: 10.1016/j.ijbiomac.2024.136405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
The prevention of catheter-associated urinary tract infections (CAUTIs) significantly impacts the reduction of morbidity and mortality associated with the use of indwelling urinary catheters. This study focused on developing an antibacterial double network hydrogel coating for latex urinary catheters, which incorporated Ag quantum dots (Ag QDs) in a polyvinyl alcohol (PVA)-chitosan (CS) double network hydrogel matrix. The PVA-CS-Ag QDs, referred to as the PCA hydrogel coating exhibited excellent mechanical and physiochemical properties with controlled release of Ag QDs. The antibacterial properties of the PCA hydrogel-coated urinary catheters were studied against both gram-negative Escherichia coli (E. coli, ATCC25922) and gram-positive Staphylococcus aureus (S. aureus, ATCC29213). The continuous release of CS oligomers and Ag QDs from the hydrogel coating contributed to the synergistic antibacterial and antiadhesion effects. Measurements of the Ag release rate revealed that even after 30 days, the concentration of Ag QDs from the PCA hydrogel-coated urinary catheters remained significantly higher than the effective antibacterial concentration of the total Ag (0.1 μg·L-1). These results indicated that the PCA hydrogel coating not only efficiently prevented bacteria attachment, but also exhibited long-term antibacterial activity, thereby inhibiting biofilm formation. Furthermore, the PCA hydrogel-coated urinary catheter demonstrated excellent biocompatibility and hemocompatibility. Overall, this novel PCA hydrogel-coated urinary catheter, with its exceptional antibacterial properties, holds great potential in reducing the incidence of CAUTIs.
Collapse
Affiliation(s)
- Jianxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yongwei Cai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Ronghua Gu
- Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yao Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yimeng Wang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Yuhang Dong
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Qi Zhao
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK.
| |
Collapse
|
3
|
Dei Rossi G, Vergani LM, Buccino F. A Novel Triad of Bio-Inspired Design, Digital Fabrication, and Bio-Derived Materials for Personalised Bone Repair. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5305. [PMID: 39517582 PMCID: PMC11547793 DOI: 10.3390/ma17215305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The emerging paradigm of personalised bone repair embodies a transformative triad comprising bio-inspired design, digital fabrication, and the exploration of innovative materials. The increasing average age of the population, alongside the rising incidence of fractures associated with age-related conditions such as osteoporosis, necessitates the development of customised, efficient, and minimally invasive treatment modalities as alternatives to conventional methods (e.g., autografts, allografts, Ilizarov distraction, and bone fixators) typically employed to promote bone regeneration. A promising innovative technique involves the use of cellularised scaffolds incorporating mesenchymal stem cells (MSCs). The selection of materials-ranging from metals and ceramics to synthetic or natural bio-derived polymers-combined with a design inspired by natural sources (including bone, corals, algae, shells, silk, and plants) facilitates the replication of geometries, architectures, porosities, biodegradation capabilities, and mechanical properties conducive to physiological bone regeneration. To mimic internal structures and geometries for construct customisation, scaffolds can be designed using Computer-aided Design (CAD) and fabricated via 3D-printing techniques. This approach not only enables precise control over external shapes and internal architectures but also accommodates the use of diverse materials that improve biological performance and provide economic advantages. Finally, advanced numerical models are employed to simulate, analyse, and optimise the complex processes involved in personalised bone regeneration, with computational predictions validated against experimental data and in vivo studies to ascertain the model's ability to predict the recovery of bone shape and function.
Collapse
Affiliation(s)
- Greta Dei Rossi
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
| | - Laura Maria Vergani
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
- IRCCS Orthopedic Institute Galeazzi, Via Cristina Belgioioso 173, 20157 Milan, Italy
| | - Federica Buccino
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
- IRCCS Orthopedic Institute Galeazzi, Via Cristina Belgioioso 173, 20157 Milan, Italy
| |
Collapse
|
4
|
de Seixas JRPC, Ribeiro KA, de Souza AA, da Silva CE, Pedra-Fixe MG, Lima-Ribeiro MHM, Silva Neto JDC, Barros W, Martins RD, Coelho LCBB, Correia MTS, Soares PAG, Carneiro-da-Cunha MG. Hydrogels based on galactomannan and κ-carrageenan containing immobilized biomolecules for in vivo thermal-burn wound treatment. Int J Biol Macromol 2024; 270:132379. [PMID: 38754680 DOI: 10.1016/j.ijbiomac.2024.132379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Hydrogels based on natural polysaccharides have demonstrated efficacy in epithelial recovery from cutaneous burn wounds. Here, we prepared a double-network hydrogel consisting of galactomannan (from Cassia grandis seeds) and κ-carrageenan (commercially sourced), cross-linked with CaCl2, as a matrix for immobilizing lactoferrin and/or Cramoll, aiming at its applicability as dressings for second-degree burn wounds. The formulations obtained [H - hydrogel, HL - hydrogel + lactoferrin, HC - hydrogel + Cramoll and HLC - hydrogel + lactoferrin + Cramoll] were analyzed rheologically as well as in terms of their stability (pH, color, microbial contamination) for 90 days. The burn was created with an aluminum bar (97 ± 3 °C) in the dorsal region of Wistar rats and subsequently treated with hydrogels (H, HL, HC, HLC) and control saline solution (S). The burn was monitored for 3, 7 and 14 days to evaluate the efficacy of the hydrogels in promoting wound healing. The hydrogels did not reveal significant pH or microbiological changes; there was an increase in brightness and a reduction in opacity for H. The rheological analysis confirmed the gel-like viscoelastic signature of the systems without substantial modification of the basic rheological characteristics, however HLC proved to be more rigid, due to rheological synergy when combining protein biomolecules. Macroscopic analyses confirmed centripetal healing with wound contraction: S < H < HC < HL < HLC. Histopathological analyses showed that hydrogel-treated groups reduced inflammation, tissue necrosis and fibrosis, while promoting re-epithelialization with focal acanthosis, especially in HLC due to a positive synergistic effect, indicating its potential as a promising therapy in the repair of burns.
Collapse
Affiliation(s)
- José R P C de Seixas
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Kátia A Ribeiro
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Andrea A de Souza
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil; Keizo Asami Institute (iLIKA), UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901 Recife, Pernambuco, Brazil
| | - Cecília E da Silva
- Department of Histology and Embryology, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Maxwelinne G Pedra-Fixe
- Department of Histology and Embryology, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Maria H M Lima-Ribeiro
- Keizo Asami Institute (iLIKA), UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901 Recife, Pernambuco, Brazil
| | - Jacinto da C Silva Neto
- Department of Histology and Embryology, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Wilson Barros
- Department of Physics, Universidade Federal de Pernambuco (UFPE), Av. Prof. Luiz Freire s/n, Cidade Universitária, CEP 50670-901 Recife, Pernambuco, Brazil
| | - René D Martins
- Department of Pharmacy, Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Rua do Alto do Reservatorio, S/N Bela Vista, CEP 55600-000 Vitória de Santo Antão, Pernambuco, Brazil
| | - Luana C B B Coelho
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Maria T S Correia
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil
| | - Paulo A G Soares
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil; Keizo Asami Institute (iLIKA), UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901 Recife, Pernambuco, Brazil.
| | - Maria G Carneiro-da-Cunha
- Department of Biochemistry, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP 50670-420 Recife, Pernambuco, Brazil; Keizo Asami Institute (iLIKA), UFPE, Av. Prof. Moraes Rego, 1235, Cidade Universitária, CEP 50670-901 Recife, Pernambuco, Brazil.
| |
Collapse
|
5
|
Stachowiak M, Mlynarczyk DT, Dlugaszewska J. Wondrous Yellow Molecule: Are Hydrogels a Successful Strategy to Overcome the Limitations of Curcumin? Molecules 2024; 29:1757. [PMID: 38675577 PMCID: PMC11051891 DOI: 10.3390/molecules29081757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumin is a natural compound with a great pharmaceutical potential that involves anticancer, anti-inflammatory, antioxidant, and neuroprotective activity. Unfortunately, its low bioavailability, instability, and poor water solubility significantly deteriorate its clinical use. Many attempts have been made to overcome this issue, and encapsulating curcumin in a hydrogel matrix may improve those properties. Hydrogel formulation is used in many drug delivery forms, including classic types and novel forms such as self-assembly systems or responsive to external factors. Reviewed studies confirmed better properties of hydrogel-stabilized curcumin in comparison to pure compound. The main enhanced characteristics were chemical stability, bioavailability, and water solubility, which enabled these systems to be tested for various diseases. These formulations were evaluated for wound healing properties, effectiveness in treating skin diseases, and anticancer and regenerative activity. Hydrogel formulation significantly improved biopharmaceutical properties, opening the opportunity to finally see curcumin as a clinically approved substance and unravel its therapeutic potential.
Collapse
Affiliation(s)
- Magdalena Stachowiak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
6
|
Bercea M, Lupu A. Recent Insights into Glucose-Responsive Concanavalin A-Based Smart Hydrogels for Controlled Insulin Delivery. Gels 2024; 10:260. [PMID: 38667679 PMCID: PMC11048858 DOI: 10.3390/gels10040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Many efforts are continuously undertaken to develop glucose-sensitive biomaterials able of controlling glucose levels in the body and self-regulating insulin delivery. Hydrogels that swell or shrink as a function of the environmental free glucose content are suitable systems for monitoring blood glucose, delivering insulin doses adapted to the glucose concentration. In this context, the development of sensors based on reversible binding to glucose molecules represents a continuous challenge. Concanavalin A (Con A) is a bioactive protein isolated from sword bean plants (Canavalia ensiformis) and contains four sugar-binding sites. The high affinity for reversibly and specifically binding glucose and mannose makes Con A as a suitable natural receptor for the development of smart glucose-responsive materials. During the last few years, Con A was used to develop smart materials, such as hydrogels, microgels, nanoparticles and films, for producing glucose biosensors or drug delivery devices. This review is focused on Con A-based materials suitable in the diagnosis and therapeutics of diabetes. A brief outlook on glucose-derived theranostics of cancer is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
7
|
Gao F, Yang X, Song W. Bioinspired Supramolecular Hydrogel from Design to Applications. SMALL METHODS 2024; 8:e2300753. [PMID: 37599261 DOI: 10.1002/smtd.202300753] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Nature offers a wealth of opportunities to solve scientific and technological issues based on its unique structures and function. The dynamic non-covalent interaction is considered to be the main base of living functions of creatures including humans, animals, and plants. Supramolecular hydrogels formed by non-covalent bonding interactions has become a unique platform for constructing promising materials for medicine, energy, electronic, and biological substitute. In this review, the self-assemble principle of supramolecular hydrogels is summarized. Next, the stimulation of external environment that triggers the assembly or disassembly of supramolecular hydrogels are recapitulated, including temperature, mechanics, light, pH, ions, etc. The main applications of bioinspired supramolecular hydrogels in terms of bionic objects including humans, animals, and plants are also described. Although so many efforts are done for revealing the synergized mechanism of the function and non-covalent interactions on the supramolecular hydrogel, the complexity and variability between stimulus and non-covalent bonding in the supramolecular system still require impeccable theories. As an outlook, the bioinspired supramolecular hydrogel is just beginning to exhibit its great potential in human life, offering significant opportunities in drug delivery and screening, implantable devices and substitutions, tissue engineering, micro-fluidic devices, and biosensors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
8
|
Lu W, Wang X, Kong C, Chen S, Hu C, Zhang J. Hydrogel Based on Riclin Cross-Linked with Polyethylene Glycol Diglycidyl Ether as a Soft Filler for Tissue Engineering. Biomacromolecules 2024; 25:1119-1132. [PMID: 38252967 DOI: 10.1021/acs.biomac.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hydrogels composed of natural polysaccharides have been widely used as filling materials, with a growing interest in medical cosmetology and skin care. However, conventional commercial dermal fillers still have limitations, particularly in terms of mechanical performance and durability in vivo. In this study, a novel injectable and implantable hydrogel with adjustable characteristics was prepared from succinoglycan riclin by introducing PEG diglycidyl ether as a cross-linker. FTIR spectra confirmed the cross-linking reaction. The riclin hydrogels exhibited shear-thinning behavior, excellent mechanical properties, and cytocompatibility through in vitro experiments. Furthermore, when compared with subcutaneous injection of a commercial hyaluronic acid hydrogel, the riclin hydrogels showed enhanced persistence and biocompatibility in Balb/c mice after 16 weeks. These results demonstrate the great potential of the riclin-based hydrogel as an alternative to conventional commercial soft tissue fillers.
Collapse
Affiliation(s)
- Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Xianjin Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Chengtao Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| |
Collapse
|
9
|
Xu S, Cai J, Cheng H, Wang W. Sustained release of therapeutic gene by injectable hydrogel for hepatocellular carcinoma. Int J Pharm X 2023; 6:100195. [PMID: 37448985 PMCID: PMC10336675 DOI: 10.1016/j.ijpx.2023.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Gene therapy has shown remarkable effectiveness in the management of disease like cancer and inflammation as a revolutionary therapeutic. Nonetheless, therapeutic drug target discovery, efficient gene delivery, and gene delivery vehicles continue to be significant obstacles. Due to their effective gene transport capabilities and low immunogenicity, supramolecular polymers have garnered significant interest. Herein, ABHD5 is identified as a potential therapeutic target since it is dysregulated in hepatocellular carcinoma (HCC). Interestingly, the downregulation of ABHD5 could induce programmed death-ligand 1 (PD-L1) expression in liver cancer, which may contribute to the immunosuppression. To overcome the immunosuppression caused by PD-L1, an injectable hydrogel is designed to achieve efficient abhydrolase domain containing 5 (ABHD5) gene delivery via the host-guest interaction with branched polyethyleneimine-g-poly (ethylene glycol), poly (ethylene oxide) and poly (propylene oxide) block copolymers and α-CD (PPA/CD), demonstrating the capability for sustained gene release. The co-assembly hydrogel demonstrates good biocompatibility and enhanced gene transfection efficiency, efficiently triggering tumor cell apoptosis. Overall, the results of this study suggest that ABHD5 is a potential therapeutic target, and that a host-guest-based supramolecular hydrogel could serve as a promising platform for the inhibition of HCC.
Collapse
Affiliation(s)
- Shuangta Xu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Jianya Cai
- Department of Surgery, Quanzhou Medical College, Quanzhou 362000, China
| | - Hongwei Cheng
- Center of molecular imaging and translational medicine, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Wei Wang
- Department of Hepatic-biliary-pancreatic-Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
10
|
Suezawa T, Sasaki N, Yukawa Y, Assan N, Uetake Y, Onuma K, Kamada R, Tomioka D, Sakurai H, Katayama R, Inoue M, Matsusaki M. Ultra-Rapid and Specific Gelation of Collagen Molecules for Transparent and Tough Gels by Transition Metal Complexation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302637. [PMID: 37697642 PMCID: PMC10602541 DOI: 10.1002/advs.202302637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/05/2023] [Indexed: 09/13/2023]
Abstract
Collagen is the most abundant protein in the human body and one of the main components of stromal tissues in tumors which have a high elastic modulus of over 50 kPa. Although collagen has been widely used as a cell culture scaffold for cancer cells, there have been limitations when attempting to fabricate a tough collagen gel with cells like a cancer stroma. Here, rapid gelation of a collagen solution within a few minutes by transition metal complexation is demonstrated. Type I collagen solution at neutral pH shows rapid gelation with a transparency of 81% and a high modulus of 1,781 kPa by mixing with K2 PtCl4 solution within 3 min. Other transition metal ions also show the same rapid gelation, but not basic metal ions. Interestingly, although type I to IV collagen molecules show rapid gelation, other extracellular matrices do not exhibit this phenomenon. Live imaging of colon cancer organoids in 3D culture indicates a collective migration property with modulating high elastic modulus, suggesting activation for metastasis progress. This technology will be useful as a new class of 3D culture for cells and organoids due to its facility for deep-live observation and mechanical stiffness adjustment.
Collapse
Affiliation(s)
- Tomoyuki Suezawa
- Division of Applied Chemistry, Graduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Yuichi Yukawa
- Division of Applied Chemistry, Graduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Nazgul Assan
- Division of Applied Chemistry, Graduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Yuta Uetake
- Division of Applied Chemistry, Graduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS‐OTRI)Osaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Kunishige Onuma
- Department of Clinical Bio‐resource Research and DevelopmentKyoto University Graduate School of MedicineKyoto606–8304Japan
| | - Rino Kamada
- Division of Applied Chemistry, Graduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Daisuke Tomioka
- Division of Applied Chemistry, Graduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS‐OTRI)Osaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyo135‐8550Japan
| | - Masahiro Inoue
- Department of Clinical Bio‐resource Research and DevelopmentKyoto University Graduate School of MedicineKyoto606–8304Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| |
Collapse
|
11
|
Plugariu IA, Bercea M, Gradinaru LM, Rusu D, Lupu A. Poly(vinyl alcohol)/Pullulan Composite Hydrogels as a Potential Platform for Wound Dressing Applications. Gels 2023; 9:580. [PMID: 37504459 PMCID: PMC10378848 DOI: 10.3390/gels9070580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogels are 3D networks with an excellent ability to retain a high amount of water or biological fluids, representing suitable candidates for wound dressing applications. They can provide a protective barrier and a moist environment, facilitating wound treatment. The present paper focuses on physical hydrogels obtained from poly(vinyl alcohol) (PVA) and pullulan (PULL) mixtures in different weight ratios by using the freezing/thawing method. Hybrid hydrogels of similar polymer compositions were prepared in the presence of 0.5% Laponite® RD. The influence of polysaccharide and clay addition on the properties of PVA hydrogels was investigated. Scanning electron microscopy showed evidence of the inner porous structure. The viscoelastic properties were investigated in different shear conditions and revealed the influence of the hydrogel composition on the network strength. The swelling behavior was followed in physiological saline solutions at 37 °C and pH = 7.4. For all samples, a quasi-Fickian diffusion mechanism was found. The delivery of neomycin sulfate was studied in similar conditions as for the swelling tests (0.15 M NaCl solutions; 37 °C; pH = 7.4) and different kinetic models were used to determine the release mechanism. The Peppas-Sahlin approach described very well the in vitro drug release mechanism from the polymeric hydrogels in the absence of clay. However, the hybrid polymer/clay hydrogels showed the best fit with the Korsmeyer-Peppas model. According to the present study, the porous membranes containing 40-60% PULL (in absence of clay) are suitable for the release of therapeutic agents at wound sites in physiological conditions.
Collapse
Affiliation(s)
- Ioana-Alexandra Plugariu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Daniela Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
12
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
13
|
Zhang K, Liu Y, Shi X, Zhang R, He Y, Zhang H, Wang W. Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review. Int J Biol Macromol 2023:125192. [PMID: 37276897 DOI: 10.1016/j.ijbiomac.2023.125192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Hydrogels is a hydrophilic, cross-linked polymer of three-dimensional network structures. The application of hydrogels prepared from a single polymer in the biomedical field has many drawbacks. The functional blend of polyvinyl alcohol and chitosan allows hydrogels to have better and more desirable properties than those produced from a single polymer, which is a good biomaterial for development and design. In this paper, we have reviewed the progress in the application of polyvinyl alcohol/chitosan composite hydrogels in various medical fields, the different cross-linking agents and cross-linking methods, and the research progress in the optimization of composite hydrogels for their subsequent wide range of biomedical applications.
Collapse
Affiliation(s)
- Kui Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| | - Yan Liu
- Department of Gynecology, First Affiliated Hospital of Xi 'an Medical College, Xi'an 710000, China
| | - Xuewen Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Ruihao Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Yixiang He
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Huaibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Wenji Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Grytsenko O, Dulebova L, Spišák E, Pukach P. Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors. Polymers (Basel) 2023; 15:polym15102259. [PMID: 37242834 DOI: 10.3390/polym15102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
This paper presents research results on the properties of composite materials based on cross-linked grafted copolymers of 2-hydroxyethylmethacrylate (HEMA) with polyvinylpyrrolidone (PVP) and their hydrogels filled with finely dispersed metal powders (Zn, Co, Cu). Metal-filled pHEMA-gr-PVP copolymers in the dry state were studied for surface hardness and swelling ability, which was characterized by swelling kinetics curves and water content. Copolymers swollen in water to an equilibrium state were studied for hardness, elasticity, and plasticity. The heat resistance of dry composites was evaluated by the Vicat softening temperature. As a result, materials with a wide range of predetermined properties were obtained, including physico-mechanical properties (surface hardness 240 ÷ 330 MPa, hardness number 0.06 ÷ 2.8 MPa, elasticity number 75 ÷ 90%), electrical properties (specific volume resistance 102 ÷ 108 Ω⋅m), thermophysical properties (Vicat heat resistance 87 ÷ 122 °C), and sorption (swelling degree 0.7 ÷ 1.6 g (H2O)/g (polymer)) at room temperature. Resistance to the destruction of the polymer matrix was confirmed by the results concerning its behavior in aggressive media such as solutions of alkalis and acids (HCl, H2SO4, NaOH), as well as some solvents (ethanol, acetone, benzene, toluene). The obtained composites are characterized by electrical conductivity, which can be adjusted within wide limits depending on the nature and content of the metal filler. The specific electrical resistance of metal-filled pHEMA-gr-PVP copolymers is sensitive to changes in moisture (with a moisture increase from 0 to 50%, ρV decreases from 108 to 102 Ω⋅m), temperature (with a temperature change from 20 °C to 175 °C, ρV of dry samples decreases by 4.5 times), pH medium (within pH from 2 to 9, the range of ρV change is from 2 to 170 kΩ⋅m), load (with a change in compressive stress from 0 kPa to 140 kPa, ρV of swollen composites decreases by 2-4 times), and the presence of low molecular weight substances, which is proven by the example involving ethanol and ammonium hydroxide. The established dependencies of the electrical conductivity of metal-filled pHEMA-gr-PVP copolymers and their hydrogels on various factors, in combination with high strength, elastic properties, sorption capacity, and resistance to aggressive media, suggest the potential for further research as a platform for the manufacture of sensors for various purposes.
Collapse
Affiliation(s)
- Oleksandr Grytsenko
- Department of Chemical Technology of Plastics Processing, Lviv Polytechnic National University, 12, St. Bandera Str., 79013 Lviv, Ukraine
| | - Ludmila Dulebova
- Department of Technologies, Materials and Computer Aided Production, Technical University of Košice, 74 Mäsiarska, 04001 Košice, Slovakia
| | - Emil Spišák
- Department of Technologies, Materials and Computer Aided Production, Technical University of Košice, 74 Mäsiarska, 04001 Košice, Slovakia
| | - Petro Pukach
- Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 12, St. Bandera Str., 79013 Lviv, Ukraine
| |
Collapse
|
15
|
Sun Z, Xiong H, Lou T, Liu W, Xu Y, Yu S, Wang H, Liu W, Yang L, Zhou C, Fan C. Multifunctional Extracellular Matrix Hydrogel with Self-Healing Properties and Promoting Angiogenesis as an Immunoregulation Platform for Diabetic Wound Healing. Gels 2023; 9:gels9050381. [PMID: 37232972 DOI: 10.3390/gels9050381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Treating chronic wounds is a global challenge. In diabetes mellitus cases, long-time and excess inflammatory responses at the injury site may delay the healing of intractable wounds. Macrophage polarization (M1/M2 types) can be closely associated with inflammatory factor generation during wound healing. Quercetin (QCT) is an efficient agent against oxidation and fibrosis that promotes wound healing. It can also inhibit inflammatory responses by regulating M1-to-M2 macrophage polarization. However, its limited solubility, low bioavailability, and hydrophobicity are the main issues restricting its applicability in wound healing. The small intestinal submucosa (SIS) has also been widely studied for treating acute/chronic wounds. It is also being extensively researched as a suitable carrier for tissue regeneration. As an extracellular matrix, SIS can support angiogenesis, cell migration, and proliferation, offering growth factors involved in tissue formation signaling and assisting wound healing. We developed a series of promising biosafe novel diabetic wound repair hydrogel wound dressings with several effects, including self-healing properties, water absorption, and immunomodulatory effects. A full-thickness wound diabetic rat model was constructed for in vivo assessment of QCT@SIS hydrogel, in which hydrogels achieved a markedly increased wound repair rate. Their effect was determined by the promotion of the wound healing process, the thickness of granulation tissue, vascularization, and macrophage polarization during wound healing. At the same time, we injected the hydrogel subcutaneously into healthy rats to perform histological analyses of sections of the heart, spleen, liver, kidney, and lung. We then tested the biochemical index levels in serum to determine the biological safety of the QCT@SIS hydrogel. In this study, the developed SIS showed convergence of biological, mechanical, and wound-healing capabilities. Here, we focused on constructing a self-healing, water-absorbable, immunomodulatory, and biocompatible hydrogel as a synergistic treatment paradigm for diabetic wounds by gelling the SIS and loading QCT for slow drug release.
Collapse
Affiliation(s)
- Zhenghua Sun
- Graduate School, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Hao Xiong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Tengfei Lou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Weixuan Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Yi Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Shiyang Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Hui Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Wanjun Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Liang Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Chao Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Cunyi Fan
- Graduate School, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| |
Collapse
|
16
|
Lupu A, Gradinaru LM, Gradinaru VR, Bercea M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023; 9:gels9050376. [PMID: 37232968 DOI: 10.3390/gels9050376] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc.
Collapse
Affiliation(s)
- Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
17
|
Li Y, Liu H, Ding Y, Li W, Zhang Y, Luo S, Xiang Q. The Use of Hydrogel-Based Materials for Radioprotection. Gels 2023; 9:gels9040301. [PMID: 37102914 PMCID: PMC10137482 DOI: 10.3390/gels9040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Major causes of the radiation-induced disease include nuclear accidents, war-related nuclear explosions, and clinical radiotherapy. While certain radioprotective drug or bioactive compounds have been utilized to protect against radiation-induced damage in preclinical and clinical settings, these strategies are hampered by poor efficacy and limited utilization. Hydrogel-based materials are effective carriers capable of enhancing the bioavailability of compounds loaded therein. As they exhibit tunable performance and excellent biocompatibility, hydrogels represent promising tools for the design of novel radioprotective therapeutic strategies. This review provides an overview of common approaches to radioprotective hydrogel preparation, followed by a discussion of the pathogenesis of radiation-induced disease and the current states of research focused on using hydrogels to protect against these diseases. These findings ultimately provide a foundation for discussions of the challenges and future prospects associated with the use of radioprotective hydrogels.
Collapse
Affiliation(s)
- Yang Li
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Han Liu
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yaqun Ding
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wanyu Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Yuansong Zhang
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Qiang Xiang
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
18
|
Bercea M. Rheology as a Tool for Fine-Tuning the Properties of Printable Bioinspired Gels. Molecules 2023; 28:2766. [PMID: 36985738 PMCID: PMC10058016 DOI: 10.3390/molecules28062766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Over the last decade, efforts have been oriented toward the development of suitable gels for 3D printing, with controlled morphology and shear-thinning behavior in well-defined conditions. As a multidisciplinary approach to the fabrication of complex biomaterials, 3D bioprinting combines cells and biocompatible materials, which are subsequently printed in specific shapes to generate 3D structures for regenerative medicine or tissue engineering. A major interest is devoted to the printing of biomimetic materials with structural fidelity after their fabrication. Among some requirements imposed for bioinks, such as biocompatibility, nontoxicity, and the possibility to be sterilized, the nondamaging processability represents a critical issue for the stability and functioning of the 3D constructs. The major challenges in the field of printable gels are to mimic at different length scales the structures existing in nature and to reproduce the functions of the biological systems. Thus, a careful investigation of the rheological characteristics allows a fine-tuning of the material properties that are manufactured for targeted applications. The fluid-like or solid-like behavior of materials in conditions similar to those encountered in additive manufacturing can be monitored through the viscoelastic parameters determined in different shear conditions. The network strength, shear-thinning, yield point, and thixotropy govern bioprintability. An assessment of these rheological features provides significant insights for the design and characterization of printable gels. This review focuses on the rheological properties of printable bioinspired gels as a survey of cutting-edge research toward developing printed materials for additive manufacturing.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
19
|
Dragan ES, Humelnicu D, Dinu MV. Sustainable Multi-Network Cationic Cryogels for High-Efficiency Removal of Hazardous Oxyanions from Aqueous Solutions. Polymers (Basel) 2023; 15:polym15040885. [PMID: 36850169 PMCID: PMC9966014 DOI: 10.3390/polym15040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
It is still a challenge to develop advanced materials able to simultaneously remove more than one pollutant. Exclusive cationic composite double- and triple-network cryogels, with adequate sustainability in the removal of Cr2O72- and H2PO4- oxyanions, were developed in this work starting from single-network (SN) sponges. Chitosan (CS), as the only polycation originating from renewable resources, and poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) and polyethyleneimine (PEI), as synthetic polycations, were employed to construct multi-network cationic composite cryogels. The properties of the composites were tailored by the cross-linking degree of the first network (SN5 and SN20, which means CS with 5 or 20 mole % of glutaraldehyde, respectively) and by the order of the successive networks. FTIR, SEM-EDX, equilibrium water content and compressive tests were used in the exhaustive characterization of these polymeric composites. The sorption performances towards Cr2O72- and H2PO4- anions were evaluated in batch mode. The pseudo-first-order, pseudo-second-order (PSO) and Elovich kinetics models, and the Langmuir, Freundlich and Sips isotherm models were used to interpret the experimental results. The adsorption data were the best fitted by the PSO kinetic model and by the Sips isotherm model, indicating that the sorption mechanism was mainly controlled by chemisorption, irrespective of the structure and number of networks. The maximum sorption capacity for both oxyanions increased with the increase in the number of networks, the highest values being found for the multi-network sponges having SN5 cryogel as the first network. In binary systems, all sorbents preferred Cr2O72- ions, the selectivity coefficient being the highest for TN sponges. The high sorption capacity and remarkable reusability, with only a 4-6% drop in the sorption capacity after five sorption-desorption cycles, recommend these composite cryogels in the removal of two of the most dangerous pollutants represented by Cr2O72- and H2PO4-.
Collapse
Affiliation(s)
- Ecaterina Stela Dragan
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
- Correspondence: ; Tel.: +40-232217454; Fax: +40-232211299
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
20
|
Bercea M, Plugariu IA, Gradinaru LM, Avadanei M, Doroftei F, Gradinaru VR. Hybrid Hydrogels for Neomycin Delivery: Synergistic Effects of Natural/Synthetic Polymers and Proteins. Polymers (Basel) 2023; 15:polym15030630. [PMID: 36771933 PMCID: PMC9920321 DOI: 10.3390/polym15030630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
This paper reports new physical hydrogels obtained by the freezing/thawing method. They include pullulan (PULL) and poly(vinyl alcohol) (PVA) as polymers, bovine serum albumin (BSA) as protein, and a tripeptide, reduced glutathione (GSH). In addition, a sample containing PULL/PVA and lysozyme was obtained in similar conditions. SEM analysis evidenced the formation of networks with porous structure. The average pore size was found to be between 15.7 μm and 24.5 μm. All samples exhibited viscoelastic behavior typical to networks, the hydrogel strength being influenced by the protein content. Infrared spectroscopy analysis revealed the presence of intermolecular hydrogen bonds and hydrophobic interactions (more pronounced for BSA content between 30% and 70%). The swelling kinetics investigated in buffer solution (pH = 7.4) at 37 °C evidenced a quasi-Fickian diffusion for all samples. The hydrogels were loaded with neomycin trisulfate salt hydrate (taken as a model drug), and the optimum formulations (samples containing 10-30% BSA or 2% lysozyme) proved a sustained drug release over 480 min in simulated physiological conditions. The experimental data were analyzed using different kinetic models in order to investigate the drug release mechanism. Among them, the semi-empirical Korsmeyer-Peppas and Peppas-Sahlin models were suitable to describe in vitro drug release mechanism of neomycin sulfate from the investigated hybrid hydrogels. The structural, viscoelastic, and swelling properties of PULL/PVA/protein hybrid hydrogels are influenced by their composition and preparation conditions, and they represent important factors for in vitro drug release behavior.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Correspondence:
| | - Ioana-Alexandra Plugariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Mihaela Avadanei
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania
| |
Collapse
|
21
|
Morariu S. Advances in the Design of Phenylboronic Acid-Based Glucose-Sensitive Hydrogels. Polymers (Basel) 2023; 15:polym15030582. [PMID: 36771883 PMCID: PMC9919422 DOI: 10.3390/polym15030582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Diabetes, characterized by an uncontrolled blood glucose level, is the main cause of blindness, heart attack, stroke, and lower limb amputation. Glucose-sensitive hydrogels able to release hypoglycemic drugs (such as insulin) as a response to the increase of the glucose level are of interest for researchers, considering the large number of diabetes patients in the world (537 million in 2021, reported by the International Diabetes Federation). Considering the current growth, it is estimated that, up to 2045, the number of people with diabetes will increase to 783 million. The present work reviews the recent developments on the hydrogels based on phenylboronic acid and its derivatives, with sensitivity to glucose, which can be suitable candidates for the design of insulin delivery systems. After a brief presentation of the dynamic covalent bonds, the design of glucose-responsive hydrogels, the mechanism by which the hypoglycemic drug release is achieved, and their self-healing capacity are presented and discussed. Finally, the conclusions and the main aspects that should be addressed in future research are shown.
Collapse
Affiliation(s)
- Simona Morariu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
22
|
Lupu A, Rosca I, Gradinaru VR, Bercea M. Temperature Induced Gelation and Antimicrobial Properties of Pluronic F127 Based Systems. Polymers (Basel) 2023; 15:polym15020355. [PMID: 36679236 PMCID: PMC9861663 DOI: 10.3390/polym15020355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Different formulations containing Pluronic F127 and polysaccharides (chitosan, sodium alginate, gellan gum, and κ-carrageenan) were investigated as potential injectable gels that behave as free-flowing liquid with reduced viscosity at low temperatures and displayed solid-like properties at 37 °C. In addition, ZnO nanoparticles, lysozyme, or curcumin were added for testing the antimicrobial properties of the thermal-sensitive gels. Rheological investigations evidenced small changes in transition temperature and kinetics of gelation at 37 °C in presence of polysaccharides. However, the gel formation is very delayed in the presence of curcumin. The antimicrobial properties of Pluronic F127 gels are very modest even by adding chitosan, lysozyme, or ZnO nanoparticles. A remarkable enhancement of antimicrobial activity was observed in the presence of curcumin. Chitosan addition to Pluronic/curcumin systems improves their viscoelasticity, antimicrobial activity, and stability in time. The balance between viscoelastic and antimicrobial characteristics needs to be considered in the formulation of Pluronic F127 gels suitable for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Correspondence:
| |
Collapse
|
23
|
Bercea M, Constantin M, Plugariu IA, Oana Daraba M, Luminita Ichim D. Thermosensitive gels of pullulan and poloxamer 407 as potential injectable biomaterials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|