1
|
Rahmawati S, Yassaroh Y, Theodora M, Tahril T, Afadil A, Santoso T, Suherman S, Nurmayanti Y. Antioxidant Edible Films Derived from Belitung Taro Tubers ( Xanthosoma sagittifolium) Incorporated with Moringa Leaf Extract ( Moringa oleifera). Prev Nutr Food Sci 2024; 29:210-219. [PMID: 38974591 PMCID: PMC11223929 DOI: 10.3746/pnf.2024.29.2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 07/09/2024] Open
Abstract
Edible films are thin films frequently manufactured using natural bioresources and are employed in food packaging to safeguard food quality. This research prepared edible films from renewable biomass consisting of Belitung taro tuber starch (Xanthosoma sagittifolium) and incorporated sorbitol as a plasticizer, carboxymethyl cellulose as a reinforcing agent, and moringa leaf extract (Moringa oleifera) as an antioxidant. The physicochemical characteristics of the resulting edible films were examined. The most favorable treatment was identified in an edible film containing 3% (v/v based on the total volume of 100 mL) of moringa leaf extract. This exhibited a tensile strength of 6.86 N/mm2, percent elongation of 73.71%, elasticity of 9.37×10-3 kgf/mm2, water absorption of 349.03%, solubility of 93.18%, and water vapor transmission speed of 3.18 g/h m2. Its shelf life was five days at ambient temperature. The edible film was found to have 135.074 ppm of half maximal inhibitory concentration (IC50) based on the antioxidant analysis of inhibition concentration (IC50) value measurements, and was classified as having moderate antioxidant activity. Additionally, the biodegradability assessment revealed that the edible films degraded within 14 days. Based on this data, it can be deduced that adding moringa leaf extract enhances the physicochemical and functional characteristics of the film. These edible films can be used as substitutes for nonrenewable and nonbiodegradable packaging materials.
Collapse
Affiliation(s)
- Sitti Rahmawati
- Chemistry Education Study Program, Faculty of Teacher Training and Educational Sciences, Tadulako University, Palu 94118, Indonesia
| | - Yassaroh Yassaroh
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN), KST BJ. Habibie Building 460, Tangerang Selatan 15314, Indonesia
| | - Melvina Theodora
- Chemistry Education Study Program, Faculty of Teacher Training and Educational Sciences, Tadulako University, Palu 94118, Indonesia
| | - Tahril Tahril
- Chemistry Education Study Program, Faculty of Teacher Training and Educational Sciences, Tadulako University, Palu 94118, Indonesia
| | - Afadil Afadil
- Chemistry Education Study Program, Faculty of Teacher Training and Educational Sciences, Tadulako University, Palu 94118, Indonesia
| | - Tri Santoso
- Chemistry Education Study Program, Faculty of Teacher Training and Educational Sciences, Tadulako University, Palu 94118, Indonesia
| | - Suherman Suherman
- Chemistry Education Study Program, Faculty of Teacher Training and Educational Sciences, Tadulako University, Palu 94118, Indonesia
| | - Yuli Nurmayanti
- Chemistry Education Study Program, Faculty of Teacher Training and Educational Sciences, Tadulako University, Palu 94118, Indonesia
| |
Collapse
|
2
|
Zhu YJ, Li JW, Meng H, He WJ, Yang Y, Wei JH. Effects of ethephon on heartwood formation and related physiological indices of Dalbergia odorifera T. Chen. FRONTIERS IN PLANT SCIENCE 2024; 14:1281877. [PMID: 38333038 PMCID: PMC10850394 DOI: 10.3389/fpls.2023.1281877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
Introduction Dalbergia odorifera T. Chen, known as fragrant rosewood, is a rare and endangered tree species. Studies have shown that plant growth regulators can effectively promote heartwood formation. This study aimed to investigate the effects of ethephon (ETH) on heartwood formation and the influence of ethephon and hydrogen peroxide (H2O2) on the physiological characteristics in D. odorifera. Methods D. odorifera branches underwent treatment with 2.5% plant growth regulators, including ETH, jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), H2O2, and inhibitors such as ascorbic acid (AsA) to inhibit H2O2 synthesis, and (S) -trans 2-amino-4 - (2-aminoethoxy) -3-butene (AVG) to inhibit ethylene synthesis. After a 14-day period, we conducted an analysis to evaluate the impact of these plant growth regulators on elongation distance, vessel occlusion percentage, and trans-nerol content. Additionally, the effects of ETH and H2O2 on endogenous plant hormones, H2O2 content, soluble protein content, and enzyme activity were investigated within 0-48 h of treatment. Results After treatment with ETH for 14 days, the extension distance of the heartwood material was 15 cm, while the trans-nerolol content was 15 times that of the ABA group. ETH and H2O2 promoted endogenous ethylene synthesis; Ethylene content peaked at 6 and 18 h. The peak ethylene content in the ETH group was 68.07%, 12.89%, and 20.87% higher than the initial value of the H2O2 group and ddH2O group, respectively, and 29.64% higher than that in the AVG group. The soluble protein content and activity of related enzymes were significantly increased following ETH treatment. Discussion ETH exhibited the most impact on heartwood formation while not hindering tree growth. This treatment effectively triggered the production of endogenous ethylene in plants and enhanced the activity of essential enzymes involved in heartwood formation. These findings serve as a valuable reference for future investigations into heartwood formation.
Collapse
Affiliation(s)
- Yuan-Jing Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Jia-Wen Li
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Hui Meng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Wen-Jie He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yun Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Jian-He Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
3
|
Zhang Q, Bu Q, Xia J, Sun R, Li D, Luo H, Jiang N, Wang C. High-Performance, Degradable, Self-Healing Bio-Based Nanocomposite Coatings with Antibacterial and Antioxidant Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1220. [PMID: 37049314 PMCID: PMC10096551 DOI: 10.3390/nano13071220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The purpose of this study is to obtain a bio-based coating with good functional activity and self-healing ability, demonstrating its potential in food, materials, and other application fields. Plastic coatings can cause serious environmental pollution. It was a good solution to replace plastic coatings with degradable coatings. However, the development of degradable coatings in the fields of food and materials was limited due to their insufficient antibacterial ability and weak comprehensive properties. Therefore, chitosan nanoparticles (NPs) loaded with gallic acid (GA) were self-assembled with gelatin (GE) to prepare high-performance, degradable, self-healing bio-based nanocomposite coatings with antibacterial and antioxidant properties. The oxygen permeability of GE nanocomposite coatings decreased gradually with the addition of NPs, and the barrier properties increased significantly. At the same time, due to the excellent antioxidant and antibacterial ability of GA, the antioxidant effect of the nanocomposite coatings increased by 119%, and the antibacterial rate against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) increased by 32% and 58%, respectively, compared with the pure GE coatings. In addition, the nanocomposite coatings can be repaired within 24 h after being scratched at room temperature. Finally, GA coated with chitosan nanoparticles can significantly delay the escape of GA, and the retardation of gallic acid release exceeded 89% in simulated solutions after 24 h immersion, extending the service life of the nanocomposite coatings.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Qihang Bu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Jiangyue Xia
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Rongxue Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Dajing Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Haibo Luo
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ning Jiang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Cheng Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
4
|
Zam M, Niyumsut I, Osako K, Rawdkuen S. Fabrication and Characterization of Intelligent Multi-Layered Biopolymer Film Incorporated with pH-Sensitive Red Cabbage Extract to Indicate Fish Freshness. Polymers (Basel) 2022; 14:polym14224914. [PMID: 36433041 PMCID: PMC9697270 DOI: 10.3390/polym14224914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to fabricate an intelligent monolayer and multi-layered biodegradable films incorporated with red cabbage extract (RCE) to act as a safe and reliable freshness indicator. A film-forming solution (FFS) of gelatin, carboxymethyl cellulose (CMC) and chitosan was prepared and fortified with 0.5% (w/v) of RCE for developing intelligent monolayer films. The intelligent multi-layer film was prepared via layer by layer casting of gelatin, chitosan (added with 0.5% of RCE) and CMC biopolymers. The thickness of the multi-layered film was the highest (0.123 ± 0.001 mm) compared to gelatin-, CMC- and chitosan-based monolayer films (p < 0.05). Chitosan film has the highest tensile strength (p < 0.05), followed by multi-layer, CMC and gelatin films. Elongation at break was slightly higher in CMC (35.67 ± 7.62%) compared to the multi-layer film (33.12 ± 9.88%) and gelatin film (p > 0.05). Water vapor permeability was higher in the multi-layer film (1.244 ± 0.05 × 10−5 g mm h−1cm−2 P−1) than the other monolayer films. Moisture content was highest in chitosan film followed by the multi-layered film (p < 0.05) and then the CMC and gelatin films. CMC film showed the highest solubility compared to multi-layered and chitosan film (p < 0.05). Additionally, transmittance and transparency values in the multi-layered film were the lowest compared to the chitosan-, CMC- and gelatin-based films. L* and a* values were the lowest, while b* values increased in the multi-layered film compared to the other film samples (p < 0.05). pH sensitivity and ammonia gas tests revealed similar color changes in chitosan and multi-layer films. However, FTIR spectra confirmed that dye leaching was not detected for the multi-layered film soaked in ethanol. The biodegradability test showed rapid degradation of multi-layered and chitosan films within 1 month. Based on the optimum results of the multi-layered film, it was applied to monitor the fresh quality of tilapia fish fillets at 4 °C for 10 days. The results of freshness acceptability were noted on day 6 due to the change in color of the multi-layer film with an estimated total volatile basic nitrogen content of 21.23 mg/100 g. Thus, the multi-layered film can be used as an indicator to monitor the quality of the fish freshness without leaching dye onto the food surface.
Collapse
Affiliation(s)
- Mindu Zam
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Thasud, Chiang Rai 57100, Thailand
| | - Itthi Niyumsut
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Thasud, Chiang Rai 57100, Thailand
| | - Kazufumi Osako
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, 333 Moo 1 Thasud, Chiang Rai 57100, Thailand
- Unit of Innovative Food Packaging and Biomaterials, Mae Fah Luang University, 333 Moo 1 Thasud, Chiang Rai 57100, Thailand
- Correspondence: ; Fax: +66-53-916737
| |
Collapse
|