1
|
Fang Z, Lin T, Fan S, Qiu X, Zhong Z, Yang G, Yang J, Zhang G, Feng Y, Ai F, Shi Q, Wan W. Antibacterial, injectable, and adhesive hydrogel promotes skin healing. Front Bioeng Biotechnol 2023; 11:1180073. [PMID: 37334269 PMCID: PMC10272432 DOI: 10.3389/fbioe.2023.1180073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
With the development of material science, hydrogels with antibacterial and wound healing properties are becoming common. However, injectable hydrogels with simple synthetic methods, low cost, inherent antibacterial properties, and inherent promoting fibroblast growth are rare. In this paper, a novel injectable hydrogel wound dressing based on carboxymethyl chitosan (CMCS) and polyethylenimine (PEI) was discovered and constructed. Since CMCS is rich in -OH and -COOH and PEI is rich in -NH2, the two can interact through strong hydrogen bonds, and it is theoretically feasible to form a gel. By changing their ratio, a series of hydrogels can be obtained by stirring and mixing with 5 wt% CMCS aqueous solution and 5 wt% PEI aqueous solution at volume ratios of 7:3, 5:5, and 3:7. Characterized by morphology, swelling rate, adhesion, rheological properties, antibacterial properties, in vitro biocompatibility, and in vivo animal experiments, the hydrogel has good injectability, biocompatibility, antibacterial (Staphylococcus aureus: 56.7 × 107 CFU/mL in the blank group and 2.5 × 107 CFU/mL in the 5/5 CPH group; Escherichia coli: 66.0 × 107 CFU/mL in the blank group and 8.5 × 107 CFU/mL in the 5/5 CPH group), and certain adhesion (0.71 kPa in the 5/5 CPH group) properties which can promote wound healing (wound healing reached 98.02% within 14 days in the 5/5 CPH group) and repair of cells with broad application prospects.
Collapse
Affiliation(s)
- Zilong Fang
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Tao Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision & Brain Health), Wenzhou, Zhejiang, China
| | - Shuai Fan
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Xing Qiu
- Department of Orthopedic Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Ziqing Zhong
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Ganghua Yang
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianqiu Yang
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Guoqing Zhang
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Yang Feng
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi, China
| | - Qingming Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenbing Wan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Chiloeches A, Fernández-García R, Fernández-García M, Mariano A, Bigioni I, Scotto d'Abusco A, Echeverría C, Muñoz-Bonilla A. PLA and PBAT-Based Electrospun Fibers Functionalized with Antibacterial Bio-Based Polymers. Macromol Biosci 2023; 23:e2200401. [PMID: 36443243 DOI: 10.1002/mabi.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Indexed: 11/30/2022]
Abstract
Antimicrobial fibers based on biodegradable polymers, poly(lactic acid) (PLA), and poly(butylene adipate-co-terephthalate) (PBAT) are prepared by electrospinning. For this purpose, a biodegradable/bio-based polyitaconate containing azoles groups (PTTI) is incorporated at 10 wt.% into the electrospinning formulations. The resulting fibers functionalized with azole moieties are uniform and free of beads. Then, the accessible azole groups are subjected to N-alkylation, treatment that provides cationic azolium groups with antibacterial activity at the surface of fibers. The positive charge density, roughness, and wettability of the cationic fibers are evaluated and compared with flat films. It is confirmed that these parameters exert an important effect on the antimicrobial properties, as well as the length of the alkylating agent and the hydrophobicity of the matrix. The quaternized PLA/PTTI fibers exhibit the highest efficiency against the tested bacteria, yielding a 4-Log reduction against S. aureus and 1.7-Log against MRSA. Then, biocompatibility and bioactivity of the fibers are evaluated in terms of adhesion, morphology and viability of fibroblasts. The results show no cytotoxic effect of the samples, however, a cytostatic effect is appreciated, which is ascribed to the strong electrostatic interactions between the positive charge at the fiber surface and the negative charge of the cell membranes.
Collapse
Affiliation(s)
- A Chiloeches
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Escuela Internacional de Doctorado de la Universidad Nacional de Educación a Distancia (UNED), C/ Bravo Murillo, 38, Madrid, 28015, Spain
| | - R Fernández-García
- Hospital Universitario de Móstoles C/ Dr. Luis Montes, s/n, Móstoles, Madrid, 28935, Spain
| | - M Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - A Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - I Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - A Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, Rome, 00185, Italy
| | - C Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - A Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid, 28006, Spain.,Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Sarapulova V, Nevakshenova E, Tsygurina K, Ruleva V, Kirichenko A, Kirichenko K. Short-Term Stability of Electrochemical Properties of Layer-by-Layer Coated Heterogeneous Ion Exchange Membranes. MEMBRANES 2022; 13:45. [PMID: 36676852 PMCID: PMC9867420 DOI: 10.3390/membranes13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Layer-by-layer adsorption allows the creation of versatile functional coatings for ion exchange membranes, but the stability of the coating and resulting properties of modified membranes in their operation is a frequently asked question. This paper examines the changes in voltammetric curves of layer-by-layer coated cation exchange membranes and pH-metry of desalination chamber with a studied membrane and an auxiliary anion exchange membrane after short-term tests, including over-limiting current modes. The practical operation of the membranes did not affect the voltammetric curves, but enhanced the generation of H+ and OH- ions in a system with polyethylenimine modified membrane in Ca2+ containing solution. It is shown that a distinction between the voltammetric curves of the membranes modified and the different polyamines persists during the operation and that, in the case of polyethylenimine, there is an additional zone of growth of potential drop in voltammetric curves and stronger generation of H+ and OH- ions as indicated by pH-metry.
Collapse
Affiliation(s)
- Veronika Sarapulova
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Ekaterina Nevakshenova
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Kseniia Tsygurina
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Valentina Ruleva
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Anna Kirichenko
- Department of Electric Engineering Thermotechnics and Renewable Energy Sources, Kuban State Agrarian University Named after I.T. Trubilin, 13 Kalinina st., 350004 Krasnodar, Russia
| | - Ksenia Kirichenko
- Physical Chemistry Department, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| |
Collapse
|