1
|
Pagnacco C, Kravicz MH, Sica FS, Fontanini V, González de San Román E, Lund R, Re F, Barroso-Bujans F. In Vitro Biocompatibility and Endothelial Permeability of Branched Polyglycidols Generated by Ring-Opening Polymerization of Glycidol with B(C 6F 5) 3 under Dry and Wet Conditions. Biomacromolecules 2024; 25:3583-3595. [PMID: 38703359 PMCID: PMC11170947 DOI: 10.1021/acs.biomac.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Polyglycidol or polyglycerol (PG), a polyether widely used in biomedical applications, has not been extensively studied in its branched cyclic form (bcPG), despite extensive research on hyperbranched PG (HPG). This study explores the biomedical promise of bcPG, particularly its ability to cross the blood-brain barrier (BBB). We evaluate in vitro biocompatibility, endothelial permeability, and formation of branched linear PG (blPG) as topological impurities in the presence of water. Small angle X-ray scattering in solution revealed a fractal dimension of approximately two for bcPG and the mixture bc+blPG, suggesting random branching. Comparisons of cytotoxicity and endothelial permeability between bcPG, bc+blPG, and HPG in a BBB model using hCMEC/D3 cells showed different biocompatibility profiles and higher endothelial permeability for HPG. bcPG showed a tendency to accumulate around cell nuclei, in contrast to the behavior of HPG. This study contributes to the understanding of the influence of polymer topology on biological behavior.
Collapse
Affiliation(s)
- Carlo
Andrea Pagnacco
- Donostia
International Physics Center (DIPC), Paseo Manuel Lardizábal 4, Donostia−San Sebastián, 20018, Spain
- Centro
de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, Donostia−San Sebastián, 20018, Spain
| | - Marcelo H. Kravicz
- School
of Medicine and Surgery, University of Milano-Bicocca, Milano, 20854, Italy
| | | | - Veronica Fontanini
- School
of Medicine and Surgery, University of Milano-Bicocca, Milano, 20854, Italy
- Department
of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Estibaliz González de San Román
- POLYMAT,
Joxe Mari Korta Center, University of the
Basque Country UPV/EHU, Avda. Tolosa 72, Donostia−San Sebastián, 20018, Spain
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, Postboks 1033, Blindern, Oslo, 0315, Norway
- Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Postboks 1033,
Blindern, Oslo, 0315, Norway
| | - Francesca Re
- School
of Medicine and Surgery, University of Milano-Bicocca, Milano, 20854, Italy
| | - Fabienne Barroso-Bujans
- Donostia
International Physics Center (DIPC), Paseo Manuel Lardizábal 4, Donostia−San Sebastián, 20018, Spain
- Centro
de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, Donostia−San Sebastián, 20018, Spain
- IKERBASQUE
- Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| |
Collapse
|
2
|
Yang F, Wang M, Zhang YJ. Synthesis of polyvinylethylene glycols (PVEGs) via polyetherification of vinylethylene carbonate by synergistic catalysis. Chem Commun (Camb) 2024; 60:3539-3542. [PMID: 38454880 DOI: 10.1039/d3cc05580a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
An efficient and controllable polyetherification of vinylethylene carbonate (VEC) using diols as initiators is developed. By using a synergistic catalysis with palladium and boron reagents under mild conditions, the polymerization process enables the regioselective production of a series of polyvinylethylene glycols (PVEGs) bearing pendent vinyl groups in high yields with accurate molecular weight control and narrow molecular weight distribution. The utility of PVEGs is demonstrated by the production of functional polyurethanes and post-polymerization modification via thiol-ene photo-click chemistry.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| | - Minghang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| |
Collapse
|
3
|
Cherri M, Romero JF, Steiner L, Dimde M, Koeppe H, Paulus B, Mohammadifar E, Haag R. Power of the Disulfide Bond: An Ideal Random Copolymerization of Biodegradable Redox-Responsive Hyperbranched Polyglycerols. Biomacromolecules 2024; 25:119-133. [PMID: 38112688 DOI: 10.1021/acs.biomac.3c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The development of copolymerization techniques that can randomly incorporate biodegradable moieties into the hyperbranched polyglycerol backbone is an option to prevent its bioaccumulation in vivo. In this study, redox-responsive and biocompatible hyperbranched polyglycerol copolymers of glycidol and 1,4,5-oxadithiepan-2-one were synthesized with an adjustable molecular weight and a defined disulfide bond content through anionic and coordination-insertion ring-opening polymerization. A truly random incorporation of the monomers was achieved under both copolymerization mechanisms. The copolymers were further characterized in terms of their aggregation behavior in solution, degradability, in vitro cell viability, and blood compatibility for potential future biomedical applications. Transmission electron microscopy revealed that the copolymer assembled into nanoparticles with a size range of 20 nm. The copolymers underwent degradation when incubated with two different reducing agents, resulting in smaller fragments of the polymer with thiol end groups. The copolymers demonstrated good biocompatibility, making them suitable for further investigation in biomedical applications.
Collapse
Affiliation(s)
- Mariam Cherri
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - J Fernanda Romero
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Luca Steiner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Mathias Dimde
- Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy, Freie Universität Berlin, Berlin 14195, Germany
| | - Hanna Koeppe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Beate Paulus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Ehsan Mohammadifar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
4
|
Eng YJ, Nguyen TM, Luo HK, Chan JMW. Antifouling polymers for nanomedicine and surfaces: recent advances. NANOSCALE 2023; 15:15472-15512. [PMID: 37740391 DOI: 10.1039/d3nr03164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Antifouling polymers are materials that can resist nonspecific interactions with cells, proteins, and other biomolecules. Typically, they are hydrophilic polymers with polar or charged moieties that are capable of strong nonbonding interactions with water molecules. This propensity to bind water generates a surface hydration layer that reduces nonspecific interactions with other molecules and is paramount to the antifouling behavior. This property is especially useful for nanoscale applications such as nanomedicine and surface modifications at the molecular level. In nanomedicine, antifouling polymers such as poly(ethylene glycol) and its alternatives play a key role in shielding drug molecules and therapeutic proteins/genes from the immune system within nanoassemblies, thereby enabling effective delivery to target tissues. For coatings, antifouling polymers help to prevent adhesion of cells and molecules to surfaces and are thus valued in marine and biomedical device applications. In this Review, we survey recent advances in antifouling polymers in the context of nanomedicine and coatings, while shining the spotlight on the major polymer classes such as PEG, polyzwitterions, poly(oxazoline)s, and other nonionic hydrophilic polymers.
Collapse
Affiliation(s)
- Yi Jie Eng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Tuan Minh Nguyen
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Julian M W Chan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
5
|
Kannan RM, Pitha I, Parikh KS. A new era in posterior segment ocular drug delivery: Translation of systemic, cell-targeted, dendrimer-based therapies. Adv Drug Deliv Rev 2023; 200:115005. [PMID: 37419213 DOI: 10.1016/j.addr.2023.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Vision impairment and loss due to posterior segment ocular disorders, including age-related macular degeneration and diabetic retinopathy, are a rapidly growing cause of disability globally. Current treatments consist primarily of intravitreal injections aimed at preventing disease progression and characterized by high cost and repeated clinic visits. Nanotechnology provides a promising platform for drug delivery to the eye, with potential to overcome anatomical and physiological barriers to provide safe, effective, and sustained treatment modalities. However, there are few nanomedicines approved for posterior segment disorders, and fewer that target specific cells or that are compatible with systemic administration. Targeting cell types that mediate these disorders via systemic administration may unlock transformative opportunities for nanomedicine and significantly improve patient access, acceptability, and outcomes. We highlight the development of hydroxyl polyamidoamine dendrimer-based therapeutics that demonstrate ligand-free cell targeting via systemic administration and are under clinical investigation for treatment of wet age-related macular degeneration.
Collapse
Affiliation(s)
- Rangaramanujam M Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Chemical and Biomolecular Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Ian Pitha
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kunal S Parikh
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Bioengineering Innovation & Design, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Chen J, Zhang Y. Hyperbranched Polymers: Recent Advances in Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:2222. [PMID: 37765191 PMCID: PMC10536223 DOI: 10.3390/pharmaceutics15092222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperbranched polymers are a class of three-dimensional dendritic polymers with highly branched architectures. Their unique structural features endow them with promising physical and chemical properties, such as abundant surface functional groups, intramolecular cavities, and low viscosity. Therefore, hyperbranched-polymer-constructed cargo delivery carriers have drawn increasing interest and are being utilized in many biomedical applications. When applied for photodynamic therapy, photosensitizers are encapsulated in or covalently incorporated into hyperbranched polymers to improve their solubility, stability, and targeting efficiency and promote the therapeutic efficacy. This review will focus on the state-of-the-art studies concerning recent progress in hyperbranched-polymer-fabricated phototherapeutic nanomaterials with emphases on the building-block structures, synthetic strategies, and their combination with the codelivered diagnostics and synergistic therapeutics. We expect to bring our demonstration to the field to increase the understanding of the structure-property relationships and promote the further development of advanced photodynamic-therapy nanosystems.
Collapse
Affiliation(s)
| | - Yichuan Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Toncheva-Moncheva N, Dimitrov E, Grancharov G, Momekova D, Petrov P, Rangelov S. Cinnamyl-Modified Polyglycidol/Poly(ε-Caprolactone) Block Copolymer Nanocarriers for Enhanced Encapsulation and Prolonged Release of Cannabidiol. Pharmaceutics 2023; 15:2128. [PMID: 37631342 PMCID: PMC10459144 DOI: 10.3390/pharmaceutics15082128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The present study describes the development of novel block copolymer nanocarriers of the phytocannabinoid cannabidiol (CBD), designed to enhance the solubility of the drug in water while achieving high encapsulation efficiency and prolonged drug release. Firstly, a well-defined amphiphilic block copolymer consisting of two outer hydrophilic polyglycidol (PG) blocks and a middle hydrophobic block of poly(ε-caprolactone) bearing pendant cinnamyl moieties (P(CyCL-co-CL)) were synthesized by the click coupling reaction of PG-monoalkyne and P(CyCL-co-CL)-diazide functional macroreagents. A non-modified polyglycidol/poly(ε-caprolactone) amphiphilic block copolymer was obtained as a referent system. Micellar carriers based on the two block copolymers were formed via the solvent evaporation method and loaded with CBD following two different protocols-loading during micelle formation and loading into preformed micelles. The key parameters/characteristics of blank and CBD-loaded micelles such as size, size distribution, zeta potential, molar mass, critical micelle concentration, morphology, and encapsulation efficiency were determined by using dynamic and static multiangle and electrophoretic light scattering, transmission electron microscopy, and atomic force microscopy. Embedding CBD into the micellar carriers affected their hydrodynamic radii to some extent, while the spherical morphology of particles was not changed. The nanoformulation based on the copolymer bearing cinnamyl moieties possessed significantly higher encapsulation efficiency and a slower rate of drug release than the non-modified copolymer. The comparative assessment of the antiproliferative effect of micellar CBD vs. the free drug against the acute myeloid leukemia-derived HL-60 cell line and Sezary Syndrome HUT-78 demonstrated that the newly developed systems have pronounced antitumor activity.
Collapse
Affiliation(s)
- Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Erik Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Georgi Grancharov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria;
| | - Petar Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| |
Collapse
|
8
|
Witt M, Cherri M, Ferraro M, Yapto C, Vogel K, Schmidt L, Haag R, Danker K, Dommisch H. Anti-inflammatory IL-8 Regulation via an Advanced Drug Delivery System at the Oral Mucosa. ACS APPLIED BIO MATERIALS 2023. [PMID: 37216981 DOI: 10.1021/acsabm.3c00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Oral inflammatory diseases are highly prevalent in the worldwide population. Topical treatment of inflammation is challenging due to dilution effects of saliva and crevicular fluid. Thus, there is a great medical need to develop smart anti-inflammatory drug delivery systems for mucosa treatment. We compared two promising anti-inflammatory dendritic poly(glycerol-caprolactone) sulfate (dPGS-PCL) polymers for their applicability to the oral mucosa. Using an ex vivo porcine tissue model, cell monolayers, and full-thickness 3D oral mucosal organoids, the polymers were evaluated for muco-adhesion, penetration, and anti-inflammatory properties. The biodegradable dPGS-PCL97 polymers adhered to and penetrated the masticatory mucosa within seconds. No effects on metabolic activity and cell proliferation were found. dPGS-PCL97 revealed a significant downregulation of pro-inflammatory cytokines with a clear preference for IL-8 in cell monolayers and mucosal organoids. Thus, dPGS-PCL97 exhibits excellent properties for topical anti-inflammatory therapy, suggesting new therapeutic avenues in the treatment of oral inflammatory diseases.
Collapse
Affiliation(s)
- Maren Witt
- Department of Periodontology, Oral Medicine and Oral Surgery, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin 14197 , Germany
| | - Mariam Cherri
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Magda Ferraro
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Cynthia Yapto
- Institute of Biochemistry, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Katrin Vogel
- Department of Periodontology, Oral Medicine and Oral Surgery, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin 14197 , Germany
| | - Lena Schmidt
- Institute of Biochemistry, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Kerstin Danker
- Institute of Biochemistry, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Henrik Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin 14197 , Germany
| |
Collapse
|
9
|
Pouyan P, Zemella A, Schloßhauer JL, Walter RM, Haag R, Kubick S. One to one comparison of cell-free synthesized erythropoietin conjugates modified with linear polyglycerol and polyethylene glycol. Sci Rep 2023; 13:6394. [PMID: 37076514 PMCID: PMC10115831 DOI: 10.1038/s41598-023-33463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
With more than 20 Food and Drug Administration (FDA)-approved poly (ethylene glycol) (PEG) modified drugs on the market, PEG is the gold standard polymer in bioconjugation. The coupling improves stability, efficiency and can prolong blood circulation time of therapeutic proteins. Even though PEGylation is described as non-toxic and non-immunogenic, reports accumulate with data showing allergic reactions to PEG. Since PEG is not only applied in therapeutics, but can also be found in foods and cosmetics, anti-PEG-antibodies can occur even without a medical treatment. Hypersensitivity to PEG thereby can lead to a reduced drug efficiency, fast blood clearance and in rare cases anaphylactic reactions. Therefore, finding alternatives for PEG is crucial. In this study, we present linear polyglycerol (LPG) for bioconjugation as an alternative polymer to PEG. We report the conjugation of LPG and PEG by click-chemistry to the glycoprotein erythropoietin (EPO), synthesized in a eukaryotic cell-free protein synthesis system. Furthermore, the influence of the polymers on EPOs stability and activity on a growth hormone dependent cell-line was evaluated. The similar characteristics of both bioconjugates show that LPGylation can be a promising alternative to PEGylation.
Collapse
Affiliation(s)
- Paria Pouyan
- Institut for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| | - Jeffrey L Schloßhauer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry-Biochemistry, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Ruben M Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Rainer Haag
- Institut for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry-Biochemistry, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
- Faculty of Health Sciences, oint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
10
|
de Campos BA, da Silva NCB, Moda LS, Vidinha P, Maia-Obi LP. pH-Sensitive Degradable Oxalic Acid Crosslinked Hyperbranched Polyglycerol Hydrogel for Controlled Drug Release. Polymers (Basel) 2023; 15:polym15071795. [PMID: 37050409 PMCID: PMC10099053 DOI: 10.3390/polym15071795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
pH-sensitive degradable hydrogels are smart materials that can cleave covalent bonds upon pH variation, leading to their degradation. Their development led to many applications for drug delivery, where drugs can be released in a pH-dependent manner. Crosslinking hyperbranched polyglycerol (HPG), a biocompatible building block bearing high end-group functionality, using oxalic acid (OA), a diacid that can be synthesized from CO2 and form highly activated ester bonds, can generate this type of smart hydrogel. Aiming to understand the process of developing this novel material and its drug release for oral administration, its formation was studied by varying reactant stoichiometry, concentration and cure procedure and temperature; it was characterized regarding gel percent (%gel), swelling degree (%S), FTIR and thermal behavior; impregnated using ibuprofen, as a model drug, and a release study was carried out at pH 2 and 7. Hydrogel formation was evidenced by its insolubility, FTIR spectra and an increase in Td and Tg; a pre-cure step was shown to be crucial for its formation and an increase in the concentration of the reactants led to higher %gel and lower %S. The impregnation resulted in a matrix-encapsulated system; and the ibuprofen release was negligible at pH 2 but completed at pH 7 due to the hydrolysis of the matrix. A pH-sensitive degradable HPG-OA hydrogel was obtained and it can largely be beneficial in controlled drug release applications.
Collapse
Affiliation(s)
- Bianca Andrade de Campos
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| | - Natalia Cristina Borges da Silva
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| | - Lucas Szmgel Moda
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| | - Pedro Vidinha
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| | - Lígia Passos Maia-Obi
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| |
Collapse
|
11
|
Gerling-Driessen UIM, Hoffmann M, Schmidt S, Snyder NL, Hartmann L. Glycopolymers against pathogen infection. Chem Soc Rev 2023; 52:2617-2642. [PMID: 36820794 DOI: 10.1039/d2cs00912a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.
Collapse
Affiliation(s)
- Ulla I M Gerling-Driessen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Miriam Hoffmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. .,Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, USA
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
12
|
Maysinger D, Zhang I, Wu PY, Kagelmacher M, Luo HD, Kizhakkedathu JN, Dernedde J, Ballauff M, Haag R, Shobo A, Multhaup G, McKinney RA. Sulfated Hyperbranched and Linear Polyglycerols Modulate HMGB1 and Morphological Plasticity in Neural Cells. ACS Chem Neurosci 2023; 14:677-688. [PMID: 36717083 DOI: 10.1021/acschemneuro.2c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to establish if polyglycerols with sulfate or sialic acid functional groups interact with high mobility group box 1 (HMGB1), and if so, which polyglycerol could prevent loss of morphological plasticity in excitatory neurons in the hippocampus. Considering that HMGB1 binds to heparan sulfate and that heparan sulfate has structural similarities with dendritic polyglycerol sulfates (dPGS), we performed the experiments to show if polyglycerols can mimic heparin functions by addressing the following questions: (1) do dendritic and linear polyglycerols interact with the alarmin molecule HMGB1? (2) Does dPGS interaction with HMGB1 influence the redox status of HMGB1? (3) Can dPGS prevent the loss of dendritic spines in organotypic cultures challenged with lipopolysaccharide (LPS)? LPS plays a critical role in infections with Gram-negative bacteria and is commonly used to test candidate therapeutic agents for inflammation and endotoxemia. Pathologically high LPS concentrations and other stressful stimuli cause HMGB1 release and post-translational modifications. We hypothesized that (i) electrostatic interactions of hyperbranched and linear polysulfated polyglycerols with HMGB1 will likely involve sites similar to those of heparan sulfate. (ii) dPGS can normalize HMGB1 compartmentalization in microglia exposed to LPS and prevent dendritic spine loss in the excitatory hippocampal neurons. We performed immunocytochemistry and biochemical analyses combined with confocal microscopy to determine cellular and extracellular locations of HMGB1 and morphological plasticity. Our results suggest that dPGS interacts with HMGB1 similarly to heparan sulfate. Hyperbranched dPGS and linear sulfated polymers prevent dendritic spine loss in hippocampal excitatory neurons. MS/MS analyses reveal that dPGS-HMGB1 interactions result in fully oxidized HMGB1 at critical cysteine residues (Cys23, Cys45, and Cys106). Triply oxidized HMGB1 leads to the loss of its pro-inflammatory action and could participate in dPGS-mediated spine loss prevention. LPG-Sia exposure to HMGB1 results in the oxidation of Cys23 and Cys106 but does not normalize spine density.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Marten Kagelmacher
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Haiming Daniel Luo
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Life Science Institute, Department of Chemistry, School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, Life Science Institute, Department of Chemistry, School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z3, Canada
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin13353, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin14195, Germany
| | - Adeola Shobo
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, MontrealH3G 1Y6, Canada
| |
Collapse
|
13
|
Perumal G, Pappuru S, Doble M, Chakraborty D, Shajahan S, Abu Haija M. Controlled Synthesis of Dendrite-like Polyglycerols Using Aluminum Complex for Biomedical Applications. ACS OMEGA 2023; 8:2377-2388. [PMID: 36687077 PMCID: PMC9851026 DOI: 10.1021/acsomega.2c06761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This work describes a one-pot synthesis of dendrite-like hyperbranched polyglycerols (HPGs) via a ring-opening multibranching polymerization (ROMBP) process using a bis(5,7-dichloro-2-methyl-8-quinolinolato)methyl aluminum complex (1) as a catalyst and 1,1,1-tris(hydroxymethyl)propane/trimethylol propane (TMP) as an initiator. Single-crystal X-ray diffraction (XRD) analysis was used to elucidate the molecular structure of complex 1. Inverse-gated (IG)13C NMR analysis of HPGs showed degree of branching between 0.50 and 0.57. Gel permeation chromatography (GPC) analysis of the HPG polymers provided low, medium, and high-molecular weight (M n) polymers ranging from 14 to 73 kDa and molecular weight distributions (M w/M n) between 1.16 and 1.35. The obtained HPGs exhibited high wettability with water contact angle between 18 and 21° and T g ranging between -39 and -55 °C. Notably, ancillary ligand-supported aluminum complexes as catalysts for HPG polymerization reactions have not been reported to date. The obtained HPG polymers in the presence of the aluminum complex (1) can be used for various biomedical applications. Here, nanocomposite electrospun fibers were fabricated with synthesized HPG polymer. The nanofibers were subjected to cell culture experiments to evaluate cytocompatibility behavior with L929 and MG63 cells. The cytocompatibility studies of HPG polymer and nanocomposite scaffold showed high cell viability and spreading. The study results concluded, synthesized HPG polymers and composite nanofibers can be used for various biomedical applications.
Collapse
Affiliation(s)
- Govindaraj Perumal
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical
and Technical Sciences (SIMATS), Chennai600 077, India
| | - Sreenath Pappuru
- Faculty
of Chemical Engineering and the Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa320003, Israel
| | - Mukesh Doble
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical
and Technical Sciences (SIMATS), Chennai600 077, India
| | - Debashis Chakraborty
- Department
of Chemistry, Indian Institute of Technology
Madras, Chennai600 036, India
| | - Shanavas Shajahan
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi127788, United
Arab Emirates
| | - Mohammad Abu Haija
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi127788, United Arab Emirates
| |
Collapse
|
14
|
Hydrotropic Hydrogels Prepared from Polyglycerol Dendrimers: Enhanced Solubilization and Release of Paclitaxel. Gels 2022; 8:gels8100614. [DOI: 10.3390/gels8100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Polyglycerol dendrimers (PGD) exhibit unique properties such as drug delivery, drug solubilization, bioimaging, and diagnostics. In this study, PGD hydrogels were prepared and evaluated as devices for controlled drug release with good solubilization properties. The PGD hydrogels were prepared by crosslinking using ethylene glycol diglycidylether (EGDGE). The concentrations of EGDGE and PGDs were varied. The hydrogels were swellable in ethanol for loading paclitaxel (PTX). The amount of PTX in the hydrogels increased with the swelling ratio, which is proportional to EGDGE/OH ratio, meaning that heterogeneous crosslinking of PGD made high dense region of PGD molecules in the matrix. The hydrogels remained transparent after loading PTX and standing in water for one day, indicating that PTX was dispersed in the hydrogels without any crystallization in water. The results of FTIR imaging of the PTX-loaded PGD hydrogels revealed good dispersion of PTX in the hydrogel matrix. Sixty percent of the loaded PTX was released in a sink condition within 90 min, suggesting that the solubilized PTX would be useful for controlled release without any precipitation. Polyglycerol dendrimer hydrogels are expected to be applicable for rapid release of poorly water-soluble drugs, e.g., for oral administration.
Collapse
|