1
|
Wilk JT, Furner CT, Kent EW, Kelly MT, Zhao B, Li CY. Effect of Grafting Density on the Crystallization Behavior of Molecular Bottlebrushes. Macromolecules 2024; 57:8487-8497. [PMID: 39281839 PMCID: PMC11394005 DOI: 10.1021/acs.macromol.4c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024]
Abstract
A unique case of sterically constrained crystallization arises in bottlebrush polymers bearing semicrystalline side chains. Bottlebrushes with grafted side chains can form crystalline structures governed by the complex interplay between side chain packing and backbone confinement. The confinement effect can be readily tuned by varying the side chain grafting density, thus affording control over the crystallization behavior of these systems. In this work, the grafting density effect on the crystallization behavior of molecular bottlebrushes comprising poly(ethylene oxide) (PEO) side chains grafted to a methacrylate backbone was systematically studied. Thermal analysis using differential scanning calorimetry showed that the bottlebrush polymers displayed suppressed crystallization temperatures, lower melting temperatures, and reduced crystallinities compared to linear homopolymer PEO. The crystalline morphology was investigated using polarized light, atomic force, and scanning electron microscopy. Isothermal crystallization experiments revealed a nonmonotonous dependence of the nucleation density on the side chain grafting density. The grafting density effect was also investigated using self-seeding experiments, revealing an increased clearing temperature and memory retention at higher grafting densities. This work highlights how grafting density influences the crystallization behavior of semicrystalline bottlebrushes, providing information for the processing and application of these unique polymers.
Collapse
Affiliation(s)
- Jeffrey T Wilk
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Carl T Furner
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Ethan W Kent
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Zheng S, Liu Y, Yao J, Zhu R, Yu X, Cao Z. Mucus Mimic Hydrogel Coating for Lubricous, Antibiofouling, and Anti-Inflammatory Urinary Catheters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46177-46190. [PMID: 39169797 DOI: 10.1021/acsami.4c13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Silicone is a common elastomer used in indwelling urinary catheters, and catheters are widely used in various medical applications due to their exceptional biocompatibility, hypoallergenic properties, and flexibility. However, silicones exhibit hydrophobic characteristics, lack inherent biolubrication, and are susceptible to nonspecific biosubstance adsorption, resulting in complications including but not limited to tissue trauma, postoperative pain, and urinary tract infections (UTIs). The development of effective surface designs for biomedical catheters to mitigate invasive damage and UITs has been a longstanding challenge. Herein, we present a novel approach to prepare a mucus mimic hydrogel coating. A thin layer of hydrogel containing xylitol is fabricated via photopolymerization. The surface modification technique and the interface-initiated hydrogel polymerization method ensure robust interfacial coherence. The resultant coating exhibits a low friction coefficient (CoF ≈ 0.1) for urinary catheter applications. Benefiting from the hydration layer and the antifouling of the xylitol unit, the xylitol hydrogel-coated surfaces (pAAAMXA) demonstrate outstanding antibiofouling properties against proteins (98.9% reduction relative to pristine polydimethylsiloxane (PDMS)). Furthermore, the pAAAMXA shows general adhesion resistance against bacteria primarily responsible for UITs (Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Methicillin-resistant strains of Staphylococcus aureus (MRSA), and Staphylococcus epidermidis (S. epidermidis)) without compromising biotoxicity (cell viability 98%). In vivo, catheters coated with the mucus mimic hydrogel displayed excellent biocompatibility, resistance to adhesion of bio substance, and anti-inflammatory characteristics. This work describes a promising alternative to conventional silicone catheters, offering potential for clinical interventional procedures with minimized complications.
Collapse
Affiliation(s)
- Sijia Zheng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ying Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Yao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruiying Zhu
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xing Yu
- Department of Thyroid Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhihai Cao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Basak S, Chatterjee R, Bandyopadhyay A. Beyond Traditional Stimuli: Exploring Salt-Responsive Bottlebrush Polymers-Trends, Applications, and Perspectives. ACS OMEGA 2024; 9:33365-33385. [PMID: 39130571 PMCID: PMC11308035 DOI: 10.1021/acsomega.4c06137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Bottlebrush polymers represent an important class of high-density side-chain-grafted polymers traditionally with high molecular weights, in which one or more polymeric side chains are tethered to each repeating unit of a linear polymer backbone, such that these macromolecules look like "bottlebrushes". The arrangement of molecular brushes is determined by side chains located at a distance considerably smaller than their unperturbed dimensions, leading to substantial monomer congestion and entropically unfavorable extension of both the backbone and the side chains. Traditionally, the conformation and physical properties of polymers are influenced by external stimuli such as solvent, temperature, pH, and light. However, a unique stimulus, salt, has recently gained attention as a means to induce shape changes in these molecular brushes. While the stimulus has been less researched to date, we see that these systems, when stimulated with salts, have the potential to be used in various engineering applications. This potential stems from the unique properties and behaviors these systems show when exposed to different salts, which could lead to new solutions and improvements in engineering processes, thus serving as the primary motivation for this narrative, as we aim to explore and highlight the various ways these systems can be utilized and the benefits they could bring to the field of engineering. This Review aims to introduce the concept of stimuli-responsive bottlebrush polymers, explore the evolutionary trajectory, delve into current trends in salt-responsive bottlebrush polymers, and elucidate how these polymers are addressing a variety of engineering challenges.
Collapse
Affiliation(s)
- Sayan Basak
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Rahul Chatterjee
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| |
Collapse
|
4
|
Zhang Z, Shen C, Zhang P, Xu S, Kong L, Liang X, Li C, Qiu X, Huang J, Cui X. Fundamental, mechanism and development of hydration lubrication: From bio-inspiration to artificial manufacturing. Adv Colloid Interface Sci 2024; 327:103145. [PMID: 38615561 DOI: 10.1016/j.cis.2024.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/16/2024]
Abstract
Friction and lubrication are ubiquitous in all kinds of movements and play a vital role in the smooth operation of production machinery. Water is indispensable both in the lubrication systems of natural organisms and in hydration lubrication systems. There exists a high degree of similarity between these systems, which has driven the development of hydration lubrication from biomimetic to artificial manufacturing. In particular, significant advancements have been made in the understanding of the mechanisms of hydration lubrication over the past 30 years. This enhanced understanding has further stimulated the exploration of biomimetic inspiration from natural hydration lubrication systems, to develop novel artificial hydration lubrication systems that are cost-effective, easily transportable, and possess excellent capability. This review summarizes the recent experimental and theoretical advances in the understanding of hydration-lubrication processes. The entire paper is divided into three parts. Firstly, surface interactions relevant to hydration lubrication are discussed, encompassing topics such as hydrogen bonding, hydration layer, electric double layer force, hydration force, and Stribeck curve. The second part begins with an introduction to articular cartilage in biomaterial lubrication, discussing its compositional structure and lubrication mechanisms. Subsequently, three major categories of bio-inspired artificial manufacturing lubricating material systems are presented, including hydrogels, polymer brushes (e.g., neutral, positive, negative and zwitterionic brushes), hydration lubricant additives (e.g., nano-particles, polymers, ionic liquids), and their related lubrication mechanism is also described. Finally, the challenges and perspectives for hydration lubrication research and materials development are presented.
Collapse
Affiliation(s)
- Zekai Zhang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Chaojie Shen
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Peipei Zhang
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Shulei Xu
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Lingchao Kong
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiubing Liang
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Chengcheng Li
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiaoyong Qiu
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China
| | - Jun Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 25006, China.
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing 100071, China.
| |
Collapse
|
5
|
Stevens MC, Taylor NM, Guo X, Hussain H, Mahmoudi N, Cattoz BN, Leung AHM, Dowding PJ, Vincent B, Briscoe WH. Diblock bottlebrush polymer in a non-polar medium: Self-assembly, surface forces, and superlubricity. J Colloid Interface Sci 2024; 658:639-647. [PMID: 38134672 DOI: 10.1016/j.jcis.2023.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Whilst bottlebrush polymers have been studied in aqueous media for their conjectured role in biolubrication, surface forces and friction mediated by bottlebrush polymers in non-polar media have not been previously reported. Here, small-angle neutron scattering (SANS) showed that a diblock bottlebrush copolymer (oligoethyleneglycol acrylate/ethylhexyl acrylate; OEGA/EHA) formed spherical core-shell aggregates in n-dodecane (a model oil) in the polymer concentration range 0.1-2.0 wt%, with a radius of gyration Rg ∼ 7 nm, comprising 40-65 polymer molecules per aggregate. The surface force apparatus (SFA) measurements revealed purely repulsive forces between surfaces bearing inhomogeneous polymer layers of thickness L ∼ 13-23 nm, attributed to adsorption of a mixture of polymer chains and surface-deformed micelles. Despite the surface inhomogeneity, the polymer layers could mediate effective lubrication, demonstrating superlubricity with the friction coefficient as low as µ ∼ 0.003. The analysis of velocity-dependence of friction using the Eyring model shed light on the mechanism of the frictional process. That is, the friction mediation was consistent with the presence of nanoscopic surface aggregates, with possible contributions from a gel-like network formed by the polymer chains on the surface. These unprecedented results, correlating self-assembled polymer micelle structure with the surface forces and friction the polymer layers mediate, highlight the potential of polymers with the diblock bottlebrush architecture widespread in biological living systems, in tailoring desired surface interactions in non-polar media.
Collapse
Affiliation(s)
- Michael C Stevens
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Nicholas M Taylor
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; Syngenta, Jealott's Hill International Research Centre, Bracknell RG42 6EY, UK
| | - Xueying Guo
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Hadeel Hussain
- Diamond Light Source Ltd, I07 Beamline, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Najet Mahmoudi
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Beatrice N Cattoz
- Infineum UK Ltd, Milton Hill Business and Technology Centre, Abingdon, Oxon OX13 6BB, UK
| | - Alice H M Leung
- Infineum UK Ltd, Milton Hill Business and Technology Centre, Abingdon, Oxon OX13 6BB, UK
| | - Peter J Dowding
- Infineum UK Ltd, Milton Hill Business and Technology Centre, Abingdon, Oxon OX13 6BB, UK
| | - Brian Vincent
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
6
|
Kerr A, Häkkinen S, Hall SCL, Kirkman P, O’Hora P, Smith T, Kinane CJ, Caruana A, Perrier S. Anchor Group Bottlebrush Polymers as Oil Additive Friction Modifiers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48574-48583. [PMID: 37811661 PMCID: PMC10591277 DOI: 10.1021/acsami.3c12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
Surface-tethered polymers have been shown to be an efficient lubrication strategy for boundary and mixed lubrication by providing a solvated film between solid surfaces. We have assessed the performance of various graft copolymers as friction modifier additives in oil and revealed important structure-property relationships for this application. The polymers consisted of an oil-soluble, grafted poly(lauryl acrylate) segment and a polar, linear poly(4-acryloylmorpholine) anchor group. Reversible addition-fragmentation chain transfer polymerization was used to access various architectures with control of the grafting density and position of the anchor group. Macrotribological studies displayed promising results with ≈50% reduction in friction coefficient at low polymer treatment rates. QCM-D experiments, neutron reflectometry, small-angle neutron scattering, and atomic force microscopy were used to gather detailed information on these polymers' surface adsorption characteristics, film structure, and solution behavior.
Collapse
Affiliation(s)
- Andrew Kerr
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | - Satu Häkkinen
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | - Stephen C. L. Hall
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | - Paul Kirkman
- Lubrizol
Limited, The Knowle, Nether Lane, Hazelwood DE56 4AN, Derbyshire, U.K.
| | - Paul O’Hora
- Lubrizol
Limited, The Knowle, Nether Lane, Hazelwood DE56 4AN, Derbyshire, U.K.
| | - Timothy Smith
- Lubrizol
Limited, The Knowle, Nether Lane, Hazelwood DE56 4AN, Derbyshire, U.K.
| | - Christian J. Kinane
- Rutherford
Appleton Laboratory, ISIS Neutron and Muon
Sourcey, Didcot OX11 0QX, U.K.
| | - Andrew Caruana
- Rutherford
Appleton Laboratory, ISIS Neutron and Muon
Sourcey, Didcot OX11 0QX, U.K.
| | - Sébastien Perrier
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, The University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
7
|
Rappoport S, Chrysostomou V, Kafetzi M, Pispas S, Talmon Y. Self-Aggregation in Aqueous Media of Amphiphilic Diblock and Random Block Copolymers Composed of Monomers with Long Side Chains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3380-3390. [PMID: 36802652 DOI: 10.1021/acs.langmuir.2c03294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Amphiphilic diblock copolymers and hydrophobically modified random block copolymers can self-assemble into different structures in a selective solvent. The formed structures depend on the copolymer properties, such as the ratio between the hydrophilic and the hydrophobic segments and their nature. In this work, we characterize by cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) the amphiphilic copolymers poly(2-dimethylamino ethyl methacrylate)-b-poly(lauryl methacrylate) (PDMAEMA-b-PLMA) and their quaternized derivatives QPDMAEMA-b-PLMA at different ratios between the hydrophilic and the hydrophobic segments. We present the various structures formed by these copolymers, including spherical and cylindrical micelles, as well as unilamellar and multilamellar vesicles. We also examined by these methods the random diblock copolymers poly(2-(dimethylamino) ethyl methacrylate)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (P(DMAEMA-co-Q6/12DMAEMA)-b-POEGMA), which are partially hydrophobically modified by iodohexane (Q6) or iodododecane (Q12). The polymers with a small POEGMA block did not form any specific nanostructure, while a polymer with a larger POEGMA block formed spherical and cylindrical micelles. This nanostructural characterization could lead to the efficient design and use of these polymers as carriers of hydrophobic or hydrophilic compounds for biomedical applications.
Collapse
Affiliation(s)
- Sapir Rappoport
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Varvara Chrysostomou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Martha Kafetzi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Yeshayahu Talmon
- Department of Chemical Engineering and The Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
8
|
Loose Semirigid Aromatic Polyester Bottle Brushes at Poly(2-isopropyl-2-oxazoline) Side Chains of Various Lengths: Behavior in Solutions and Thermoresponsiveness. Polymers (Basel) 2022; 14:polym14245354. [PMID: 36559721 PMCID: PMC9781464 DOI: 10.3390/polym14245354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
A polycondensation aromatic polyester with an oxygen spacer was synthesized and used as a macroinitiator for the grafting of linear poly(2-isopropyl-2-oxazoline) (PiPrOx) by the cationic polymerization method. The length of the thermosensitive side chains was varied by the initiator:monomer ratio. Using methods of molecular hydrodynamics, light scattering and turbidimetry, the copolymers were studied in organic solvents and in water. The molecular characteristics of the main chain and graft copolymers, the polymerization degree of side chains and their grafting density have been determined. The equilibrium rigidity of the macroinitiator and the conformations of grafted macromolecules were evaluated. In selective solvents, they take on a star-like conformation or aggregate depending on the degree of shielding of the main chain by side chains. The thermoresponsiveness of graft copolymers in aqueous solutions was studied, and their LCST were estimated. The results are compared with data for graft copolymers composed of PiPrOx side chains and flexible or rigid chain backbones of aromatic polyester type.
Collapse
|
9
|
Zhulina EB, Sheiko SS, Borisov OV. Theoretical advances in molecular bottlebrushes and comblike (co)polymers: solutions, gels, and self-assembly. SOFT MATTER 2022; 18:8714-8732. [PMID: 36373559 DOI: 10.1039/d2sm01141g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present an overview of state-of-the-art theory of (i) conformational properties of molecular bottlebrushes in solution, (ii) self-assembly of di- and triblock copolymers comprising comb-shaped and bottlebrush blocks in solutions and melts, and (iii) cross-linked and self-assembled gels with bottlebrush subchains. We demonstrate how theoretical models enable quantitative prediction and interpretation of experimental results and provide rational guidance for design of new materials with physical properties tunable by architecture of constituent bottlebrush blocks.
Collapse
Affiliation(s)
- Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergei S Sheiko
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA
| | - Oleg V Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France.
| |
Collapse
|
10
|
Puszka A, Podkościelna B. Special Issue: Synthesis, Processing, Structure and Properties of Polymer Materials. Polymers (Basel) 2022; 14:4550. [PMID: 36365544 PMCID: PMC9658594 DOI: 10.3390/polym14214550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Polymeric materials are widely used in many different technical fields [...].
Collapse
Affiliation(s)
- Andrzej Puszka
- Department of Polymer Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, Gliniana 33, 20-614 Lublin, Poland
| | - Beata Podkościelna
- Department of Polymer Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, Gliniana 33, 20-614 Lublin, Poland
| |
Collapse
|