1
|
Garciamendez-Mijares CE, Aguilar FJ, Hernandez P, Kuang X, Gonzalez M, Ortiz V, Riesgo RA, Ruiz DSR, Rivera VAM, Rodriguez JC, Mestre FL, Castillo PC, Perez A, Cruz LM, Lim KS, Zhang YS. Design considerations for digital light processing bioprinters. APPLIED PHYSICS REVIEWS 2024; 11:031314. [PMID: 39221036 PMCID: PMC11284760 DOI: 10.1063/5.0187558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
With the rapid development and popularization of additive manufacturing, different technologies, including, but not limited to, extrusion-, droplet-, and vat-photopolymerization-based fabrication techniques, have emerged that have allowed tremendous progress in three-dimensional (3D) printing in the past decades. Bioprinting, typically using living cells and/or biomaterials conformed by different printing modalities, has produced functional tissues. As a subclass of vat-photopolymerization bioprinting, digital light processing (DLP) uses digitally controlled photomasks to selectively solidify liquid photocurable bioinks to construct complex physical objects in a layer-by-layer manner. DLP bioprinting presents unique advantages, including short printing times, relatively low manufacturing costs, and decently high resolutions, allowing users to achieve significant progress in the bioprinting of tissue-like complex structures. Nevertheless, the need to accommodate different materials while bioprinting and improve the printing performance has driven the rapid progress in DLP bioprinters, which requires multiple pieces of knowledge ranging from optics, electronics, software, and materials beyond the biological aspects. This raises the need for a comprehensive review to recapitulate the most important considerations in the design and assembly of DLP bioprinters. This review begins with analyzing unique considerations and specific examples in the hardware, including the resin vat, optical system, and electronics. In the software, the workflow is analyzed, including the parameters to be considered for the control of the bioprinter and the voxelizing/slicing algorithm. In addition, we briefly discuss the material requirements for DLP bioprinting. Then, we provide a section with best practices and maintenance of a do-it-yourself DLP bioprinter. Finally, we highlight the future outlooks of the DLP technology and their critical role in directing the future of bioprinting. The state-of-the-art progress in DLP bioprinter in this review will provide a set of knowledge for innovative DLP bioprinter designs.
Collapse
Affiliation(s)
- Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Francisco Javier Aguilar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Pavel Hernandez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Mauricio Gonzalez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Vanessa Ortiz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Ricardo A. Riesgo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - David S. Rendon Ruiz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Juan Carlos Rodriguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Francisco Lugo Mestre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Penelope Ceron Castillo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Abraham Perez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Lourdes Monserrat Cruz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Khoon S. Lim
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
2
|
Bachmann I, Behrmann O, Klingenberg-Ernst M, Rupnik M, Hufert FT, Dame G, Weidmann M. Rapid Isothermal Detection of Pathogenic Clostridioides difficile Using Recombinase Polymerase Amplification. Anal Chem 2024; 96:3267-3275. [PMID: 38358754 DOI: 10.1021/acs.analchem.3c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Nosocomial-associated diarrhea due to Clostridioides difficile infection (CDI) is diagnosed after sample precultivation by the detection of the toxins in enzyme immunoassays or via toxin gene nucleic acid amplification. Rapid and direct diagnosis is important for targeted treatment to prevent severe cases and recurrence. We developed two singleplex and a one-pot duplex fluorescent 15 min isothermal recombinase polymerase amplification (RPA) assays targeting the toxin genes A and B (tcdA and tcdB). Furthermore, we adapted the singleplex RPA to a 3D-printed microreactor device. Analytical sensitivity was determined using a DNA standard and DNA extracts of 20 C. difficile strains with different toxinotypes. Nineteen clostridial and gastrointestinal bacteria strains were used to determine analytical specificity. Adaptation of singleplex assays to duplex assays in a 50 μL volume required optimized primer and probe concentrations. A volume reduction by one-fourth (12.4 μL) was established for the 3D-printed microreactor. Mixing of RPA was confirmed as essential for optimal analytical sensitivity. Detection limits (LOD) ranging from 119 to 1411 DNA molecules detected were similar in the duplex tube format and in the singleplex 3D-printed microreactor format. The duplex RPA allows the simultaneous detection of both toxins important for the timely and reliable diagnosis of CDI. The 3D-printed reaction chamber can be developed into a microfluidic lab-on-a-chip system use at the point of care.
Collapse
Affiliation(s)
- Iris Bachmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Ole Behrmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany
| | | | - Maja Rupnik
- Center for Medical Microbiology, Department for Microbiological Research, National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
- Faculty of Medicine, Maribor, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Frank T Hufert
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany
- Department of Virology, University Medical Center, Kreuzbergring 57, 37075 Göttingen, Germany
- Brandenburg University of Technology Cottbus - Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gregory Dame
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Manfred Weidmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany
- Department of Virology, University Medical Center, Kreuzbergring 57, 37075 Göttingen, Germany
| |
Collapse
|
3
|
Milton LA, Viglione MS, Ong LJY, Nordin GP, Toh YC. Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications. LAB ON A CHIP 2023; 23:3537-3560. [PMID: 37476860 PMCID: PMC10448871 DOI: 10.1039/d3lc00094j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Organs-on-a-chip, or OoCs, are microfluidic tissue culture devices with micro-scaled architectures that repeatedly achieve biomimicry of biological phenomena. They are well positioned to become the primary pre-clinical testing modality as they possess high translational value. Current methods of fabrication have facilitated the development of many custom OoCs that have generated promising results. However, the reliance on microfabrication and soft lithographic fabrication techniques has limited their prototyping turnover rate and scalability. Additive manufacturing, known commonly as 3D printing, shows promise to expedite this prototyping process, while also making fabrication easier and more reproducible. We briefly introduce common 3D printing modalities before identifying two sub-types of vat photopolymerization - stereolithography (SLA) and digital light processing (DLP) - as the most advantageous fabrication methods for the future of OoC development. We then outline the motivations for shifting to 3D printing, the requirements for 3D printed OoCs to be competitive with the current state of the art, and several considerations for achieving successful 3D printed OoC devices touching on design and fabrication techniques, including a survey of commercial and custom 3D printers and resins. In all, we aim to form a guide for the end-user to facilitate the in-house generation of 3D printed OoCs, along with the future translation of these important devices.
Collapse
Affiliation(s)
- Laura A Milton
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Matthew S Viglione
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA.
| | - Louis Jun Ye Ong
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA.
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
- Centre for Microbiome Research, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
4
|
Valijam S, Nilsson DPG, Malyshev D, Öberg R, Salehi A, Andersson M. Fabricating a dielectrophoretic microfluidic device using 3D-printed moulds and silver conductive paint. Sci Rep 2023; 13:9560. [PMID: 37308526 DOI: 10.1038/s41598-023-36502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023] Open
Abstract
Dielectrophoresis is an electric field-based technique for moving neutral particles through a fluid. When used for particle separation, dielectrophoresis has many advantages compared to other methods, like providing label-free operation with greater control of the separation forces. In this paper, we design, build, and test a low-voltage dielectrophoretic device using a 3D printing approach. This lab-on-a-chip device fits on a microscope glass slide and incorporates microfluidic channels for particle separation. First, we use multiphysics simulations to evaluate the separation efficiency of the prospective device and guide the design process. Second, we fabricate the device in PDMS (polydimethylsiloxane) by using 3D-printed moulds that contain patterns of the channels and electrodes. The imprint of the electrodes is then filled with silver conductive paint, making a 9-pole comb electrode. Lastly, we evaluate the separation efficiency of our device by introducing a mixture of 3 μm and 10 μm polystyrene particles and tracking their progression. Our device is able to efficiently separate these particles when the electrodes are energized with ±12 V at 75 kHz. Overall, our method allows the fabrication of cheap and effective dielectrophoretic microfluidic devices using commercial off-the-shelf equipment.
Collapse
Affiliation(s)
- Shayan Valijam
- Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, 1631714191, Iran
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | | | - Dmitry Malyshev
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Rasmus Öberg
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Alireza Salehi
- Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, 1631714191, Iran
| | - Magnus Andersson
- Department of Physics, Umeå University, 901 87, Umeå, Sweden.
- Umeå Center for Microbial Research (UCMR), 901 87, Umeå, Sweden.
| |
Collapse
|
6
|
Combining 3D Printing and Microfluidic Techniques: A Powerful Synergy for Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16010069. [PMID: 36678566 PMCID: PMC9867206 DOI: 10.3390/ph16010069] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Nanomedicine has grown tremendously in recent years as a responsive strategy to find novel therapies for treating challenging pathological conditions. As a result, there is an urgent need to develop novel formulations capable of providing adequate therapeutic treatment while overcoming the limitations of traditional protocols. Lately, microfluidic technology (MF) and additive manufacturing (AM) have both acquired popularity, bringing numerous benefits to a wide range of life science applications. There have been numerous benefits and drawbacks of MF and AM as distinct techniques, with case studies showing how the careful optimization of operational parameters enables them to overcome existing limitations. Therefore, the focus of this review was to highlight the potential of the synergy between MF and AM, emphasizing the significant benefits that this collaboration could entail. The combination of the techniques ensures the full customization of MF-based systems while remaining cost-effective and less time-consuming compared to classical approaches. Furthermore, MF and AM enable highly sustainable procedures suitable for industrial scale-out, leading to one of the most promising innovations of the near future.
Collapse
|