Revealing Nanodomain Structures of Bottom-Up-Fabricated Graphene-Embedded Silicon Oxycarbide Ceramics.
Polymers (Basel) 2022;
14:polym14173675. [PMID:
36080751 PMCID:
PMC9460592 DOI:
10.3390/polym14173675]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Dispersing graphene nanosheets in polymer-derived ceramics (PDCs) has become a promising route to produce exceptional mechanical and functional properties. To reveal the complex nanodomain structures of graphene–PDC composites, a novel reduced graphene oxide aerogel embedded silicon oxycarbide (RGOA-SiOC) nanocomposite was fabricated bottom-up using a 3D reduced graphene oxide aerogel as a skeleton followed by infiltration of a ceramic precursor and high-temperature pyrolysis. The reduced graphene oxide played a critical role in not only the form of the free carbon phase but also the distribution of SiOxC4−x structural units in SiOC. Long-ordered and continuous graphene layers were then embedded into the amorphous SiOC phase. The oxygen-rich SiOxC4−x units were more prone to forming than carbon-rich SiOxC4−x units in SiOC after the introduction of reduced graphene oxide, which we attributed to the bonding of Si atoms in SiOC with O atoms in reduced graphene oxide during the pyrolysis process.
Collapse