1
|
Tran MH, Choi TR, Yang YH, Lee EY. Synthesis and characterization of self-healing bio-based polyurethane from microbial poly(3-hydroxybutyrate) produced in methanotrophs. Int J Biol Macromol 2024; 281:136533. [PMID: 39401625 DOI: 10.1016/j.ijbiomac.2024.136533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Poly(3-hydroxybutyrate) (PHB) is an important class of renewable and biodegradable polymers that have recently attracted significant interest. However, the limitations of the physical properties of PHB, owing to its brittle nature, hinder its application in versatile polymers. In this study, we propose an efficient conversion of microbial PHB produced and recovered from methanotrophs to produce the oligomer PHB-diol. The PHB transesterification was conducted using different alcohols and the reaction conditions were optimized to obtain a liquid-like PHB-diol product, a low-molar-mass polyol with a molecular weight of 1000-1400 g/mol for polyurethane (PU) synthesis. A comprehensive characterization of PU samples made from PHB-derived polyol suggested that it could be a viable substitute for 50 wt% traditional petroleum-derived polyol in PU synthesis. In contrast to petroleum-based PU, the synthetic PU film made from microbiologically generated PHB-diol showed noteworthy self-healing ability with a healing efficiency of up to 91.08 % at moderate temperatures after a simple drying process. Self-healing ability is highly desirable and significant for the sustainable manufacturing of advanced materials from bioresources for a wide range of practical applications in electronic devices, coatings, biomedicine, and aerospace.
Collapse
Affiliation(s)
- My Ha Tran
- Department of Chemical Engineering, BK21 FOUR Integrated Engineering Program, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, BK21 FOUR Integrated Engineering Program, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
2
|
Zhong W, Agarwal V. Polymer degrading marine Microbulbifer bacteria: an un(der)utilized source of chemical and biocatalytic novelty. Beilstein J Org Chem 2024; 20:1635-1651. [PMID: 39076296 PMCID: PMC11285056 DOI: 10.3762/bjoc.20.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Microbulbifer is a genus of halophilic bacteria that are commonly detected in the commensal marine microbiomes. These bacteria have been recognized for their ability to degrade polysaccharides and other polymeric materials. Increasingly, Microbulbifer genomes indicate these bacteria to be an untapped reservoir for novel natural product discovery and biosynthetic novelty. In this review, we summarize the distribution of Microbulbifer bacteria, activities of the various polymer degrading enzymes that these bacteria produce, and an up-to-date summary of the natural products that have been isolated from Microbulbifer strains. We argue that these bacteria have been hiding in plain sight, and contemporary efforts into their genome and metabolome mining are going to lead to a proliferation of Microbulbifer-derived natural products in the future. We also describe, where possible, the ecological interactions of these bacteria in marine microbiomes.
Collapse
Affiliation(s)
- Weimao Zhong
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Piyathilake U, Lin C, Bolan N, Bundschuh J, Rinklebe J, Herath I. Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review. CHEMOSPHERE 2024; 355:141773. [PMID: 38548076 DOI: 10.1016/j.chemosphere.2024.141773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024]
Abstract
Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.
Collapse
Affiliation(s)
- Udara Piyathilake
- Environmental Science Division, National Institute of Fundamental Studies (NIFS), Kandy, 2000, Sri Lanka
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, 4350, QLD, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
4
|
Tyubaeva PM, Varyan IA, Nikolskaya ED, Yabbarov NG, Chirkina MV, Sokol MB, Mollaeva MR, Yurina LV, Vasilyeva AD, Rosenfeld MA, Obydennyi SI, Chabin IA, Popov AA. Electrospinning of biomimetic materials with fibrinogen for effective early-stage wound healing. Int J Biol Macromol 2024; 260:129514. [PMID: 38237825 DOI: 10.1016/j.ijbiomac.2024.129514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/01/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Electrospun biomimetic materials based on polyester of natural origin poly-3-hudroxybutyrate (PHB) modified with hemin (Hmi) and fibrinogen (Fbg) represent a great interest and are potentially applicable in various fields. Here, we describe formulation of the new fibrous PHB-Fbg and PHB-Hmi-Fbg materials with complex structure for biomedical application. The average diameter of the fibers was 3.5 μm and 1.8 μm respectively. Hmi presence increased porosity from 80 % to 94 %, significantly reduced the number of defects, ensured the formation of a larger number of open pores, and improved mechanical properties. Hmi presence significantly improved the molding properties of the material. Hmi facilitated effective Fbg adsorption on the of the PHB wound-healing material, ensuring uniform localization of the protein on the surface of the fibers. Next, we evaluated cytocompatibility, cell behavior, and open wound healing in mice. The results demonstrated that PHB-Fbg and PHB-Hmi-Fbg electrospun materials had pronounced properties and may be promising for early-stage wound healing - the PHB-Hmi-Fbg sample accelerated wound closure by 35 % on the 3rd day, and PHB-Hmi showed 45 % more effective wound closure on the 15th day.
Collapse
Affiliation(s)
- Polina M Tyubaeva
- Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation.
| | - Ivetta A Varyan
- Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Elena D Nikolskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Nikita G Yabbarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Margarita V Chirkina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Maria B Sokol
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Mariia R Mollaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Lyubov V Yurina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Alexandra D Vasilyeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Mark A Rosenfeld
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| | - Sergei I Obydennyi
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation; Centre for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russian Federation
| | - Ivan A Chabin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Anatoly A Popov
- Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow 119334, Russian Federation
| |
Collapse
|
5
|
Huang Y, Jiang Y, Zhao A, Liu Y, Chen X, Wang F, Liu H, Huang W, Ihsan YN, Jiang M, Jiang Y. Microbulbifer litoralis sp. nov., Isolated from Seashore of Weizhou Island. Curr Microbiol 2024; 81:105. [PMID: 38393402 DOI: 10.1007/s00284-023-03594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024]
Abstract
A bacterium designated GXH0434T was isolated from sea shore samples collected from Weizhou Island, Beihai, Guangxi, China. The organism is motile, strictly aerobic, and possesses a rod-coccus cell cycle in association with the growth phase. It can grow at 15-45 °C (optimum 37 °C), at pH 6.0-11.0 (optimum 6.0), and at 0-20% (w/v) NaCl (optimum 5.0-8.0%). The strain is positive for peroxidase and oxidase activity, negative for Voges-Proskauer test, can hydrolyze Tween 20, Tween 60, Tween 80, casein, and is able to produce siderophore and has the function of nitrogen fixation. Molecular phylogenetic analysis based on 16S rRNA gene sequences indicated that GXH0434T was most closely related to Microbulbifer halophilus KCTC 12848T with the similarity of 97.2%, followed by Microbulbifer chitinilyticus JCM 16148T (97.1%) and Microbulbifer taiwanensis LMG 26125T (96.5%). The digital DNA-DNA hybridization and the average nucleotide identity values between GXH0434T and Microbulbifer halophilus KCTC 12848T were 28.90% and 83.38%, respectively, which were below thresholds of species delineation. The genomic DNA G+C content of the strain was 61.9%. The major fatty acids were iso-C15:0, C16:0, iso-C11:0 3-OH, iso-C11:0 and Summed features 8 (C18:0 ω7c and/or C18:0 ω6c). The major polar lipids detected in GXH0434T were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC). The major respiratory quinone was ubiquinone Q-8. Based on the above polyphasic classification indicated strain GXH0434T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer litoralis sp. nov. is proposed. The type strain is GXH0434T (= MCCC 1K07158T = KCTC 92169T).
Collapse
Affiliation(s)
- Ying Huang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Yu Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Aolin Zhao
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Xuemei Chen
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Fang Wang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Hongcun Liu
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Wenshan Huang
- Guangxi Lvyounong Biological Technology Co., Ltd, Nanning, 530000, People's Republic of China
| | - Yudi N Ihsan
- Department of Marine Science, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mingguo Jiang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China.
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
6
|
Tran MH, Choi TR, Yang YH, Lee OK, Lee EY. An efficient and eco-friendly approach for the sustainable recovery and properties characterization of polyhydroxyalkanoates produced by methanotrophs. Int J Biol Macromol 2024; 257:128687. [PMID: 38101655 DOI: 10.1016/j.ijbiomac.2023.128687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Synthetic biodegradable and bio-based polymers have emerged as sustainable alternatives to nonrenewable petroleum-derived polymers which cause serious environmental issues. In particular, polyhydroxyalkanoates (PHA) are promising biopolymers owing to their outstanding biodegradability and biocompatibility. The production of the homopolymer poly(3-hydroxybutyrate) (PHB) and copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from type II methanotrophs via microbial fermentation was presented. For the efficient extraction and recovery of intracellular PHA from methanotrophs, different extraction approaches were investigated including solvent extraction using 1,3-dioxolane as a green solvent, integrated cell lysis and solvent extraction, and cell digestion without the use of organic solvents. Among various extraction approaches, the integrated method exhibited the highest extraction performance, with PHA recovery and purity exceeding 91 % and 93 %, respectively, even when the PHA content of the cells was low. Furthermore, the molecular weight, thermal stability, and mechanical properties of the recovered PHA were comprehensively analyzed to suggest its suitable practical applications. The obtained properties were comparable to that of the commercial PHA products and PHA produced from other microbial species, indicating an efficient recovery of high-quality PHA produced from methanotrophs.
Collapse
Affiliation(s)
- My Ha Tran
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
7
|
Zheng Y, Wang P, Wei Y, Feng Z, Jia Z, Li J, Ren L. Untargeted metabolomics elucidated biosynthesis of polyhydroxyalkanoate by mixed microbial cultures from waste activated sludge under different pH values. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117300. [PMID: 36657207 DOI: 10.1016/j.jenvman.2023.117300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Waste activated sludge has been frequently used as mixed substrate to produce polyhydroxyalkanoate (PHA). However, insufficient research on microbial metabolism has led to difficulties in regulating PHA accumulation in mixed microbial cultures (MMCs). To explore the variation of functional genes during domestication and the effect of different pH conditions on metabolic pathways during PHA accumulation, MMCs were domesticated by adding acetate and propionate with aerobic dynamic feeding strategy for 60 days. As the domestication progressed, the microbial community diversity declined and PHA-producing bacteria, Brevundimonas, Dechloromonas and Hyphomonas, were enriched. Through bacterial function prediction by PICRUSt the gene rpoE involved in starvation resistance of bacteria was enriched after the domestication. The pH value of 8.5 was the best condition for PHA accumulation in MMCs, under which a maximum PHA content reached 23.50% and hydroxybutyric (HB)/hydroxyvaleric (HV) reached 2.22. Untargeted metabolomics analysis exhibited that pH conditions of 7 and 8.5 could promote the up-regulation of significant differential metabolites, while higher alkaline conditions caused the inhibition of metabolic activity. Functional annotation showed that pH condition of 8.5 significantly affected Pyrimidine metabolism, resulting in an increase in PHA production. Regarding the pathways of PHA biosynthesis, acetoacetate was found to be significant in the metabolism of hydroxybutyric, and the alkaline condition could restrain the conversion from hydroxybutyric (HB) to the acetoacetate to protect PHB accumulation in MMCs compared with neutral condition. Taken together, the present results can advance the fundamental understanding of metabolic function in PHA accumulation under different pH conditions.
Collapse
Affiliation(s)
- Yi Zheng
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215128, China
| | - Pan Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215128, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Zhijie Jia
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215128, China
| | - Lianhai Ren
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
8
|
Kim B, Oh SJ, Hwang JH, Kim HJ, Shin N, Bhatia SK, Jeon JM, Yoon JJ, Yoo J, Ahn J, Park JH, Yang YH. Polyhydroxybutyrate production from crude glycerol using a highly robust bacterial strain Halomonas sp. YLGW01. Int J Biol Macromol 2023; 236:123997. [PMID: 36907298 DOI: 10.1016/j.ijbiomac.2023.123997] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Petrochemical-based plastics are hardly biodegradable and a major cause of environmental pollution, and polyhydroxybutyrate (PHB) is attracting attention as an alternative due to its similar properties. However, the cost of PHB production is high and is considered the greatest challenge for its industrialization. Here, crude glycerol was used as a carbon source for more efficient PHB production. Among the 18 strains investigated, Halomonas taeanenisis YLGW01 was selected for PHB production due to its salt tolerance and high glycerol consumption rate. Furthermore, this strain can produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3 HV)) with 17 % 3 HV mol fraction when a precursor is added. PHB production was maximized through medium optimization and activated carbon treatment of crude glycerol, resulting in 10.5 g/L of PHB with 60 % PHB content in fed-batch fermentation. Physical properties of the produced PHB were analyzed, i.e., weight average molecular weight (6.8 × 105), number average molecular weight (4.4 × 105), and the polydispersity index (1.53). In the universal testing machine analysis, the extracted intracellular PHB showed a decrease in Young's modulus, an increase in Elongation at break, greater flexibility than authentic film, and decreased brittleness. This study confirmed that YLGW01 is a promising strain for industrial PHB production using crude glycerol.
Collapse
Affiliation(s)
- Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jaehung Yoo
- GRIBIO Co. Ltd, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Bhatia SK. Microbial Biopolymers: Trends in Synthesis, Modification, and Applications. Polymers (Basel) 2023; 15:polym15061364. [PMID: 36987144 PMCID: PMC10051619 DOI: 10.3390/polym15061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Microbes can act as a factory for the conversion of a variety of carbon and nitrogen sources into diverse kinds of intracellular and extracellular biopolymers, including polyhydroxyalkanoates (PHA) and exopolysaccharides (EPS), under different stress conditions [...].
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|