1
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
2
|
Nosrati-Siahmazgi V, Abbaszadeh S, Musaie K, Eskandari MR, Rezaei S, Xiao B, Ghorbani-Bidkorpeh F, Shahbazi MA. NIR-Responsive injectable hydrogel cross-linked by homobifunctional PEG for photo-hyperthermia of melanoma, antibacterial wound healing, and preventing post-operative adhesion. Mater Today Bio 2024; 26:101062. [PMID: 38706729 PMCID: PMC11066557 DOI: 10.1016/j.mtbio.2024.101062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024] Open
Abstract
Current therapeutic approaches for skin cancer face significant challenges, including wound infection, delayed skin regeneration, and tumor recurrence. To overcome these challenges, an injectable adhesive near-infrared (NIR)-responsive hydrogel with time-dependent enhancement in viscosity is developed for combined melanoma therapy and antibacterial wound healing acceleration. The multifunctional hydrogel is prepared through the chemical crosslinking between poly(methyl vinyl ether-alt-maleic acid) and gelatin, followed by the incorporation of CuO nanosheets and allantoin. The synergistic inherent antibacterial potential of CuO nanosheets, the regenerative and smoothing effect of allantoin, the extracellular matrix-mimicking effect of gelatin, and the desirable swelling behavior of the hydrogel results in fast wound recovery after photothermal ablation of the tumor. Additionally, the hydrogel can serve as an alternative to sutures owing to its tissue adhesiveness ability, which can further render it the merits for accelerated repair of abdominal lesions while acting as a biocompatible barrier to prevent peritoneal adhesion.
Collapse
Affiliation(s)
- Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184, Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111, Zanjan, Iran
| | - Kiyan Musaie
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713, AV Groningen, the Netherlands
| | - Mohammad Reza Eskandari
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Science, 45139-56184, Zanjan, Iran
| | - Saman Rezaei
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713, AV Groningen, the Netherlands
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Ali Shahbazi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184, Zanjan, Iran
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713, AV Groningen, the Netherlands
| |
Collapse
|
3
|
Zhang J, Zhu W, Liang J, Li L, Zheng L, Shi X, Wang C, Dong Y, Li C, Zhu X. In Situ Synthesis of Gold Nanoparticles from Chitin Nanogels and Their Drug Release Response to Stimulation. Polymers (Basel) 2024; 16:390. [PMID: 38337280 DOI: 10.3390/polym16030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, gold nanoparticles (AuNPs) were synthesized in situ using chitin nanogels (CNGs) as templates to prepare composites (CNGs@AuNPs) with good photothermal properties, wherein their drug release properties in response to stimulation by near-infrared (NIR) light were investigated. AuNPs with particle sizes ranging from 2.5 nm to 90 nm were prepared by varying the reaction temperature and chloroauric acid concentration. The photothermal effect of different materials was probed by near-infrared light. Under 1 mg/mL of chloroauric acid at 120 °C, the prepared CNGs@AuNPs could increase the temperature by 32 °C within 10 min at a power of 2 W/cm2. The Adriamycin hydrochloride (DOX) was loaded into the CNGs@AuNPs to investigate their release behaviors under different pH values, temperatures, and near-infrared light stimulations. The results showed that CNGs@AuNPs were pH- and temperature-responsive, suggesting that low pH and high temperature could promote drug release. In addition, NIR light stimulation accelerated the drug release. Cellular experiments confirmed the synergistic effect of DOX-loaded CNGs@AuNPs on chemotherapy and photothermal therapy under NIR radiation.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenjin Zhu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jingyi Liang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Limei Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Longhui Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Chao Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Youming Dong
- College of Materials Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiuhong Zhu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
4
|
Li HZ, Zhu J, Weng GJ, Li JJ, Li L, Zhao JW. Application of nanotechnology in bladder cancer diagnosis and therapeutic drug delivery. J Mater Chem B 2023; 11:8368-8386. [PMID: 37580958 DOI: 10.1039/d3tb01323e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Bladder cancer (BC) is one of the most common malignant tumors in the urinary system, and its high recurrence rate is a great economic burden to patients. Traditional diagnosis and treatment methods have the disadvantages of insufficient targeting, obvious side effects and low sensitivity, which seriously limit the accurate diagnosis and efficient treatment of BC. Due to their small size, easy surface modification, optical properties such as plasmon resonance, and surface enhanced Raman scattering, good electrical conductivity and photothermal conversion properties, nanomaterials have great potential application value in the realization of specific diagnosis and targeted therapy of BC. At present, the application of nanomaterials in the diagnosis and treatment of BC is attracting great attention and achieving rich research results. Therefore, this paper summarizes the recent research on nanomaterials in the diagnosis and treatment of BC, clarifies the existing advantages and disadvantages, and provides theoretical guidance for promoting the accurate diagnosis and efficient treatment of BC.
Collapse
Affiliation(s)
- Hang-Zhuo Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
5
|
Alfano M, Alchera E, Sacchi A, Gori A, Quilici G, Locatelli I, Venegoni C, Lucianò R, Gasparri AM, Colombo B, Taiè G, Jose J, Armanetti P, Menichetti L, Musco G, Salonia A, Corti A, Curnis F. A simple and robust nanosystem for photoacoustic imaging of bladder cancer based on α5β1-targeted gold nanorods. J Nanobiotechnology 2023; 21:301. [PMID: 37635243 PMCID: PMC10463347 DOI: 10.1186/s12951-023-02028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Early detection and removal of bladder cancer in patients is crucial to prevent tumor recurrence and progression. Because current imaging techniques may fail to detect small lesions of in situ carcinomas, patients with bladder cancer often relapse after initial diagnosis, thereby requiring frequent follow-up and treatments. RESULTS In an attempt to obtain a sensitive and high-resolution imaging modality for bladder cancer, we have developed a photoacoustic imaging approach based on the use of PEGylated gold nanorods (GNRs) as a contrast agent, functionalized with the peptide cyclic [CphgisoDGRG] (Iso4), a selective ligand of α5β1 integrin expressed by bladder cancer cells. This product (called GNRs@PEG-Iso4) was produced by a simple two-step procedure based on GNRs activation with lipoic acid-polyethyleneglycol(PEG-5KDa)-maleimide and functionalization with peptide Iso4. Biochemical and biological studies showed that GNRs@PEG-Iso4 can efficiently recognize purified integrin α5β1 and α5β1-positive bladder cancer cells. GNRs@PEG-Iso4 was stable and did not aggregate in urine or in 5% sodium chloride, or after freeze/thaw cycles or prolonged exposure to 55 °C, and, even more importantly, do not settle after instillation into the bladder. Intravesical instillation of GNRs@PEG-Iso4 into mice bearing orthotopic MB49-Luc bladder tumors, followed by photoacoustic imaging, efficiently detected small cancer lesions. The binding to tumor lesions was competed by a neutralizing anti-α5β1 integrin antibody; furthermore, no binding was observed to healthy bladders (α5β1-negative), pointing to a specific targeting mechanism. CONCLUSION GNRs@PEG-Iso4 represents a simple and robust contrast agent for photoacoustic imaging and diagnosis of small bladder cancer lesions.
Collapse
Grants
- Grant agreement No. 801126, EDIT European Union's Horizon 2020
- Grant agreement No. 801126, EDIT European Union's Horizon 2020
- Grant agreement No. 801126, EDIT European Union's Horizon 2020
- Grant agreement No. 801126, EDIT European Union's Horizon 2020
- Grant agreement No. 801126, EDIT European Union's Horizon 2020
- Grant agreement No. 801126, EDIT European Union's Horizon 2020
- Grant agreement No. 801126, EDIT European Union's Horizon 2020
- Grant agreement No. 801126, EDIT European Union's Horizon 2020
- Grant agreement No. 801126, EDIT European Union's Horizon 2020
- Grant agreement No. 801126, EDIT European Union's Horizon 2020
- RF-2016-02361054 Ministero della Salute
- RF-2016-02361054 Ministero della Salute
- RF-2016-02361054 Ministero della Salute
- European Union’s Horizon 2020
Collapse
Affiliation(s)
- Massimo Alfano
- Unit of Urology, URI, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Alchera
- Unit of Urology, URI, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelina Sacchi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche, C.N.R., Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Irene Locatelli
- Unit of Urology, URI, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Venegoni
- Unit of Urology, URI, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Gasparri
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Barbara Colombo
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Giulia Taiè
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Jithin Jose
- FUJIFILM Visualsonics Inc, Amsterdam, The Netherlands
| | - Paolo Armanetti
- Institute of Clinical Physiology, Italian National Research Council (CNR), Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, Italian National Research Council (CNR), Pisa, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Salonia
- Unit of Urology, URI, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
6
|
Pontico M, Conte M, Petronella F, Frantellizzi V, De Feo MS, Di Luzio D, Pani R, De Vincentis G, De Sio L. 18F-fluorodeoxyglucose ( 18F-FDG) Functionalized Gold Nanoparticles (GNPs) for Plasmonic Photothermal Ablation of Cancer: A Review. Pharmaceutics 2023; 15:319. [PMID: 36839641 PMCID: PMC9967497 DOI: 10.3390/pharmaceutics15020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The meeting and merging between innovative nanotechnological systems, such as nanoparticles, and the persistent need to outperform diagnostic-therapeutic approaches to fighting cancer are revolutionizing the medical research scenario, leading us into the world of nanomedicine. Photothermal therapy (PTT) is a non-invasive thermo-ablative treatment in which cellular hyperthermia is generated through the interaction of near-infrared light with light-to-heat converter entities, such as gold nanoparticles (GNPs). GNPs have great potential to improve recovery time, cure complexity, and time spent on the treatment of specific types of cancer. The development of gold nanostructures for photothermal efficacy and target selectivity ensures effective and deep tissue-penetrating PTT with fewer worries about adverse effects from nonspecific distributions. Regardless of the thriving research recorded in the last decade regarding the multiple biomedical applications of nanoparticles and, in particular, their conjugation with drugs, few works have been completed regarding the possibility of combining GNPs with the cancer-targeted pharmaceutical fluorodeoxyglucose (FDG). This review aims to provide an actual scenario on the application of functionalized GNP-mediated PTT for cancer ablation purposes, regarding the opportunity given by the 18F-fluorodeoxyglucose (18F-FDG) functionalization.
Collapse
Affiliation(s)
- Mariano Pontico
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Francesca Petronella
- Institute of Crystallography CNR-IC, National Research Council of Italy, Monterotondo, 00015 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Dario Di Luzio
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Roberto Pani
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|