1
|
Mali SN, Pandey A. Development of curcumin integrated smart pH indicator, antibacterial, and antioxidant waste derived Artocarpus lakoocha starch-based packaging film. Int J Biol Macromol 2024; 275:133827. [PMID: 39084983 DOI: 10.1016/j.ijbiomac.2024.133827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Monitoring of food freshness is considered one of the crucial challenges for both customers/consumers and the food industries. In this study, we developed a curcumin-based starch film (F1) for pH-sensitive intelligent food packaging application. The starch was obtained from waste seeds of Artocarpus lakoocha (NS-MJF). The native starch underwent various physical and chemical modifications to yield modified starches (S1 [Autoclave heat treated], S2 [osmotic-pressure treated], S3 [citric acid treated]). The native starch was then used further for the formation of curcumin (2.5 % w/w)-based film (F1). We had analyzed these starches for solubility, colour analysis, biodegradability, oil absorption capacity, and moisture content, etc. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed favourable microstructures. The addition of curcumin to the starch enhanced the contact angle and elongation at the break of the resulting films. Antioxidant and antimicrobial assays, along with real-time freshness monitoring of chicken fillets, were also conducted. Thus, our findings may contribute to the optimization of pH-responsive biopolymer-based films for intelligent poultry packaging, promising advancements in food preservation and safety.
Collapse
Affiliation(s)
- Suraj N Mali
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Jharkhand 835215, India; School of Pharmacy, D.Y. Patil University (Deemed to be University), Sector 7, Nerul, Navi Mumbai 400706, India.
| | - Anima Pandey
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Jharkhand 835215, India
| |
Collapse
|
2
|
Al-Fakih GOA, Ilyas RA, Huzaifah MRM, El-Shafay AS. Recent advances in sago (Metroxylon sagu) fibres, biopolymers, biocomposites, and their prospective applications in industry: A comprehensive review. Int J Biol Macromol 2024; 269:132045. [PMID: 38710254 DOI: 10.1016/j.ijbiomac.2024.132045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Escalating petroleum depletion and environmental crises linked to conventional plastics have fueled interest in eco-friendly alternatives. Natural fibres and biopolymers are garnering increasing attention due to their sustainability. The sago palm (Metroxylon sagu), a tropical tree, holds potential for such materials, with cellulose-rich fibres (42.4-44.12 %) showcasing strong mechanics. Extracted sago palm starch can be blended, reinforced, or plasticised for improved traits. However, a comprehensive review of sago palm fibres, starch, and biocomposites is notably absent. This paper fills this void, meticulously assessing recent advancements in sago palm fibre, cellulose and starch properties, and their eco-friendly composite fabrication. Moreover, it uncovers the latent prospects of sago palm fibres and biopolymers across industries like automotive, packaging, and bioenergy. This review presents a crucial resource for envisaging and realising sustainable materials.
Collapse
Affiliation(s)
- Ghassan O A Al-Fakih
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Centre for Advance Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis.
| | - M R M Huzaifah
- Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu 97008, Sarawak, Malaysia.
| | - A S El-Shafay
- Department of Mechanical Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
3
|
Cahyana Y, Annisa NDN, Khoerunnisa TK, Sulastri S, Marta H, Rialita T, Yuliana T, Aït-Kaddour A, Şumnu G. Banana starch modified by heat moisture treatment and annealing: Study on digestion kinetics and enzyme affinity. Int J Biol Macromol 2024; 258:128771. [PMID: 38101675 DOI: 10.1016/j.ijbiomac.2023.128771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Starch modification by annealing (ANN) and heat-moisture treatment (HMT) results in a lower crystallinity compared to native but the change of B crystalline type to A type is only observed in HMT starch. All starches possess two different digestion rate constants i.e. k1 (at rapid phase) and k2 (at slow phase) which may be linked to the preserved intact starch granule following thermal treatment. HMT starch contains higher content of slowly digestible starch (C2∞) compared to the C2∞ of the other starches. The lower enzyme binding to HMT starch (Kd value increases from 0.12 mg/mL in native starch to 0.83 mg/mL) may be linked to the increase in the degree of ordered structure of the granule surface (observed from the absorption band ratio of 1000 cm-1/1022 cm-1). The lower affinity may lead to a lower k1 value. This holds true for ANN and native starch which displays similar k1, Kd value and degree of ordered to disordered structure. Lower k2 in HMT starch compared to the corresponding k2 in the other starches may be linked to the slower enzyme diffusion into the core of starch granule due to the tightly packed structure of A crystalline type in HMT starch.
Collapse
Affiliation(s)
- Yana Cahyana
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia.
| | - Nadia Dewi Nur Annisa
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Tiara Kurnia Khoerunnisa
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Sri Sulastri
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Herlina Marta
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Tita Rialita
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Tri Yuliana
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia
| | - Abderrahmane Aït-Kaddour
- Department of Food Technology, Faculty of Agroindustrial Technology, University of Padjadjaran, Sumedang 45363, Jawa Barat, Indonesia; VetAgro Sup, INRAE (National Institute for Agriculture, Food, and Environment), Université Clermont-Auvergne, 63370 Lempdes, France
| | - Gülüm Şumnu
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
4
|
Gayary MA, Marboh V, Mahnot NK, Chutia H, Mahanta CL. Characteristics of rice starches modified by single and dual heat moisture and osmotic pressure treatments. Int J Biol Macromol 2024; 255:127932. [PMID: 37949279 DOI: 10.1016/j.ijbiomac.2023.127932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/14/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
The effect of osmotic pressure treatment (OPT), heat moisture treatment (HMT), and their dual combination as HMT-OPT and OPT-HMT on functional and pasting properties, gel texture, crystallinity, thermal, morphological, and rheological properties, and in vitro digestibility of modified starches were investigated. HMT was done with 29 % moisture at 111 °C for 45 min while OPT was performed at 117 °C for 35 min with saturated sodium sulphate solution. All modifications increased amylose content, improved pasting stability, and reduced swelling power and solubility. Dual modifications caused higher morphological changes than single modified starches. HMT and OPT increased pasting temperature, setback and final viscosity while decreased peak viscosity and breakdown, whereas HMT-OPT and OPT-HMT reduced all pasting parameters except pasting temperature. 1047/1022 and 995/1022 ratios and relative crystallinity decreased. V-type polymorphs were formed, and gelatinization temperature range increased with lower gelatinization enthalpy. Starch gel elasticity, RS and SDS content were enhanced to a greater extent after HMT-OPT and OPT-HMT. HMT as a single and dual form with OPT showed prominent effect on pasting, thermal, crystalline, and rheological properties. Application of HMT, OPT and dual modified starches with improved functionalities may be targeted for suitable food applications such as noodles.
Collapse
Affiliation(s)
- Mainao Alina Gayary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India; Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Vegonia Marboh
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Nikhil Kumar Mahnot
- Department of Food Technology, Rajiv Gandhi University, Doimukh 791112, Arunachal Pradesh, India
| | - Hemanta Chutia
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
5
|
Marta H, Rismawati A, Soeherman GP, Cahyana Y, Djali M, Yuliana T, Sondari D. The Effect of Dual-Modification by Heat-Moisture Treatment and Octenylsuccinylation on Physicochemical and Pasting Properties of Arrowroot Starch. Polymers (Basel) 2023; 15:3215. [PMID: 37571112 PMCID: PMC10421524 DOI: 10.3390/polym15153215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Starch is widely applied in various industrial sectors, including the food industry. Starch is used as a thickener, stabilizer, or emulsifier. However, arrowroot starch generally has weaknesses, such as unstable under heating and acidic conditions, which are generally applied to processing in the food industry. Modifications were applied to improve the characteristics of native arrowroot starch. In this study, arrowroot starch was modified by heat-moisture treatment (HMT), octenylsuccinylation (OSA), and dual modification between OSA and HMT in a different sequence--namely, HMT followed by OSA, and OSA followed by HMT. This study aims to determine the effect of different modification methods on the physicochemical and functional properties of native arrowroot starch. The result shows that both single HMT and dual modification caused damage to native starch granules, such as the formation of cracks and roughness. For single OSA treatment, especially, there is no significant change in granule morphology after modification. All modification treatments did not change the crystalline type of starch but reduced the RC of native starch. Both single HMT and dual modifications (HMT-OSA, OSA-HMT) increased pasting temperature and setback, but, conversely, decreased the peak and the breakdown viscosity of native starch, whereas single OSA had the opposite trend compared with the other modifications. HMT played a greater role in increasing the thermal stability and the retrogradation ability of arrowroot starch. Both single modifications (HMT and OSA) increased the hardness and gumminess of native starch, and the opposite was true for the dual modifications. HMT had a greater effect on color characteristics, where the lightness and whiteness index of native arrowroot starch decreased. Single OSA modification increased swelling volume higher than dual modification. Both single HMT and dual modifications increased water absorption capacity and decreased the oil absorption capacity of native arrowroot starch.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (A.R.); (Y.C.); (M.D.); (T.Y.)
| | - Ari Rismawati
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (A.R.); (Y.C.); (M.D.); (T.Y.)
| | | | - Yana Cahyana
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (A.R.); (Y.C.); (M.D.); (T.Y.)
| | - Mohamad Djali
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (A.R.); (Y.C.); (M.D.); (T.Y.)
| | - Tri Yuliana
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia; (A.R.); (Y.C.); (M.D.); (T.Y.)
| | - Dewi Sondari
- Research Center for Biomass and Bioproducts, Cibinong Science Center, National Research and Innovation Agency, Cibinong 16911, Indonesia;
| |
Collapse
|
6
|
Marta H, Febiola C, Cahyana Y, Arifin HR, Fetriyuna F, Sondari D. Application of Composite Flour from Indonesian Local Tubers in Gluten-Free Pancakes. Foods 2023; 12:foods12091892. [PMID: 37174430 PMCID: PMC10178693 DOI: 10.3390/foods12091892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Pancakes are fast food snacks that are generally made with wheat flour as the basic ingredients, which is an imported commodity and detrimental for people who are allergic to gluten. To reduce the use of wheat, alternative raw materials derived from local commodities are used, such as modified cassava flour (mocaf), arrowroot flour, and suweg flour. The experiment was carried out by mixing mocaf flour, arrowroot flour, and suweg flour to produce composite flour with a ratio of 70:15:15 (CF1), 70:20:10 (CF2), and 70:20:5 (CF3). The result showed that the ratio of mocaf flour, arrowroot flour, and suweg flour had a significant effect on pasting temperature, peak viscosity, hold viscosity, breakdown viscosity, setback, L*, a*, hue, whiteness, ∆E, as well as swelling volume and solubility on the characteristics of the composite flour. There was also a significant effect on the texture characteristics of hardness, adhesiveness, chewiness, color characteristics L*, a*, whiteness, ∆E, and flavor preference for the gluten-free pancake products. The best formulation to produce pancakes that have characteristics similar to wheat flour-based pancakes was 70% mocaf flour, 15% arrowroot flour, and 15% suweg flour.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Christine Febiola
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Yana Cahyana
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Heni Radiani Arifin
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Fetriyuna Fetriyuna
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Dewi Sondari
- Research Center for Biomass and Bioproducts, Cibinong Science Center, National Researchand Innovation Agency, West Java, Cibinong 16911, Indonesia
| |
Collapse
|
7
|
Cahyana Y, Verrell C, Kriswanda D, Aulia GA, Yusra NA, Marta H, Sukri N, Esirgapovich SJ, Abduvakhitovna SS. Properties Comparison of Oxidized and Heat Moisture Treated (HMT) Starch-Based Biodegradable Films. Polymers (Basel) 2023; 15:polym15092046. [PMID: 37177193 PMCID: PMC10180903 DOI: 10.3390/polym15092046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Starch-based biodegradable films have been studied for a long time. To improve starch properties and to increase film characteristics, starch is commonly modified. Amongst different types of starch modifications, oxidation and heat moisture treatment are interesting to explore. Unfortunately, review on these modifications for film application is rarely found, although these starch modifications provide interesting results regarding the starch and film properties. This paper aims to discuss the progress of research on oxidized and heat moisture-treated-starch for edible film application. In general, both HMT and oxidation modification on starch lead to an increase in film's tensile strength and Young's modulus, suggesting an improvement in film mechanical properties. The elongation, however, tends to decrease in oxidized starch-based film, hence more brittle film. Meanwhile, HMT tends to result in a more ductile film. The drawback of HMT film is its lower transparency, while the opposite is observed in oxidized films. The observation on WVP (water vapor permeability) of HMT starch-based film shows that the trend of WVP is not consistent. Similarly, an inconsistent trend of WVP is also found in oxidized starch films. This suggests that the WVP parameter is very sensitive to intrinsic and extrinsic factors. Starch source and its concentration in film, film thickness, RH (relative humidity) of film storage, oxidation method and its severity, plasticizer type and its concentration in film, and crystallinity value may partly play roles in determining film properties.
Collapse
Affiliation(s)
- Yana Cahyana
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Christoper Verrell
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Dodo Kriswanda
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Ghina Almira Aulia
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Namira Azkia Yusra
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Herlina Marta
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Nandi Sukri
- Departement of Food Industrial Technology, Faculty of Agroindustrial Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | | | | |
Collapse
|
8
|
Marta H, Rizki DI, Mardawati E, Djali M, Mohammad M, Cahyana Y. Starch Nanoparticles: Preparation, Properties and Applications. Polymers (Basel) 2023; 15:polym15051167. [PMID: 36904409 PMCID: PMC10007494 DOI: 10.3390/polym15051167] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Starch as a natural polymer is abundant and widely used in various industries around the world. In general, the preparation methods for starch nanoparticles (SNPs) can be classified into 'top-down' and 'bottom-up' methods. SNPs can be produced in smaller sizes and used to improve the functional properties of starch. Thus, they are considered for the various opportunities to improve the quality of product development with starch. This literature study presents information and reviews regarding SNPs, their general preparation methods, characteristics of the resulting SNPs and their applications, especially in food systems, such as Pickering emulsion, bioplastic filler, antimicrobial agent, fat replacer and encapsulating agent. The aspects related to the properties of SNPs and information on the extent of their utilisation are reviewed in this study. The findings can be utilised and encouraged by other researchers to develop and expand the applications of SNPs.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Dina Intan Rizki
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Agroindustrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Mohamad Djali
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute (SERI), Universitas Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yana Cahyana
- Department of Food Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|