1
|
Biney M, Gusiatin MZ. Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 1: Evaluating Types of Co-Substrates and Co-Pyrolysis Conditions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3603. [PMID: 39063895 PMCID: PMC11278580 DOI: 10.3390/ma17143603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
With the increasing production of municipal sewage sludge (MSS) worldwide, the development of efficient and sustainable strategies for its management is crucial. Pyrolysis of MSS offers several benefits, including volume reduction, pathogen elimination, and energy recovery through the production of biochar, syngas, and bio-oil. However, the process can be limited by the composition of the MSS, which can affect the quality of the biochar. Co-pyrolysis has emerged as a promising solution for the sustainable management of MSS, reducing the toxicity of biochar and improving its physical and chemical properties to expand its potential applications. This review discusses the status of MSS as a feedstock for biochar production. It describes the types and properties of various co-substrates grouped according to European biochar certification requirements, including those from forestry and wood processing, agriculture, food processing residues, recycling, anaerobic digestion, and other sources. In addition, the review addresses the optimization of co-pyrolysis conditions, including the type of furnace, mixing ratio of MSS and co-substrate, co-pyrolysis temperature, residence time, heating rate, type of inert gas, and flow rate. This overview shows the potential of different biomass types for the upgrading of MSS biochar and provides a basis for research into new co-substrates. This approach not only mitigates the environmental impact of MSS but also contributes to the wider goal of achieving a circular economy in MSS management.
Collapse
Affiliation(s)
| | - Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna Str. 45G, 10-709 Olsztyn, Poland;
| |
Collapse
|
2
|
Papuga S, Savković J, Djurdjevic M, Ciprioti SV. Effect of Feed Mass, Reactor Temperature, and Time on the Yield of Waste Polypropylene Pyrolysis Oil Produced via a Fixed-Bed Reactor. Polymers (Basel) 2024; 16:1302. [PMID: 38794495 PMCID: PMC11125430 DOI: 10.3390/polym16101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
This paper presents the results of investigations into the pyrolysis of waste polypropylene in a laboratory fixed-bed batch reactor. The experiments were designed and verified in such a way as to allow the application of the response surface methodology (RSM) in the development of an empirical mathematical model that quantifies the impacts mentioned above. The influence of the mass of the raw material (50, 100, and 150 g) together with the reactor temperature (450, 475, and 500 °C) and the reaction time (45, 50 and 75 min) was examined. It has been shown that the mass of the raw material, i.e., the filling volume of the reactor, has a significant influence on the pyrolysis oil yield. This influence exceeds the influence of reactor temperature and reaction time. This was explained by observing the temperature change inside the reactor at three different spots at the bottom, middle, and top of the reactor. The recorded temperature diagrams show that, with greater masses of feedstock, local overheating occurs in the middle part of the reactor, which leads to the overcracking of volatile products and, from there, to an increased formation of non-condensable gases, i.e., a reduced yield of pyrolytic oil.
Collapse
Affiliation(s)
- Saša Papuga
- Faculty of Technology, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Jelena Savković
- Faculty of Technology, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Milica Djurdjevic
- Faculty of Mechanical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Stefano Vecchio Ciprioti
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome, I-00161 Rome, Italy
| |
Collapse
|
3
|
Valizadeh S, Valizadeh B, Seo MW, Choi YJ, Lee J, Chen WH, Lin KYA, Park YK. Recent advances in liquid fuel production from plastic waste via pyrolysis: Emphasis on polyolefins and polystyrene. ENVIRONMENTAL RESEARCH 2024; 246:118154. [PMID: 38218520 DOI: 10.1016/j.envres.2024.118154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
The management of plastic waste (PW) has become an indispensable worldwide issue because of the enhanced accumulation and environmental impacts of these waste materials. Thermo-catalytic pyrolysis has been proposed as an emerging technology for the valorization of PW into value-added liquid fuels. This review provides a comprehensive investigation of the latest advances in thermo-catalytic pyrolysis of PW for liquid fuel generation, by emphasizing polyethylene, polypropylene, and polystyrene. To this end, the current strategies of PW management are summarized. The various parameters affecting the thermal pyrolysis of PW (e.g., temperature, residence time, heating rate, pyrolysis medium, and plastic type) are discussed, highlighting their significant influence on feed reactivity, product yield, and carbon number distribution of the pyrolysis process. Optimizing these parameters in the pyrolysis process can ensure highly efficient energy recovery from PW. In comparison with non-catalytic PW pyrolysis, catalytic pyrolysis of PW is considered by discussing mechanisms, reaction pathways, and the performance of various catalysts. It is established that the introduction of either acid or base catalysts shifts PW pyrolysis from the conventional free radical mechanism towards the carbonium ion mechanism, altering its kinetics and pathways. This review also provides an overview of PW pyrolysis practicality for scaling up by describing techno-economic challenges and opportunities, environmental considerations, and presenting future outlooks in this field. Overall, via investigation of the recent research findings, this paper offers valuable insights into the potential of thermo-catalytic pyrolysis as an emerging strategy for PW management and the production of liquid fuels, while also highlighting avenues for further exploration and development.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul 02504, South Korea
| | - Behzad Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul 02504, South Korea
| | - Myung Won Seo
- School of Environmental Engineering, University of Seoul, Seoul 02504, South Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul 02504, South Korea
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, South Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, South Korea.
| |
Collapse
|
4
|
Gonzalez-Aguilar AM, Pérez-García V, Riesco-Ávila JM. A Thermo-Catalytic Pyrolysis of Polystyrene Waste Review: A Systematic, Statistical, and Bibliometric Approach. Polymers (Basel) 2023; 15:polym15061582. [PMID: 36987361 PMCID: PMC10054604 DOI: 10.3390/polym15061582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Global polystyrene (PS) production has been influenced by the lightness and heat resistance this material offers in different applications, such as construction and packaging. However, population growth and the lack of PS recycling lead to a large waste generation, affecting the environment. Pyrolysis has been recognized as an effective recycling method, converting PS waste into valuable products in the chemical industry. The present work addresses a systematic, bibliometric, and statistical analysis of results carried out from 2015 to 2022, making an extensive critique of the most influential operation parameters in the thermo-catalytic pyrolysis of PS and its waste. The systematic study showed that the conversion of PS into a liquid with high aromatic content (84.75% of styrene) can be achieved by pyrolysis. Discussion of PS as fuel is described compared to commercial fuels. In addition, PS favors the production of liquid fuel when subjected to co-pyrolysis with biomass, improving its properties such as viscosity and energy content. A statistical analysis of the data compilation was also discussed, evaluating the influence of temperature, reactor design, and catalysts on product yield.
Collapse
Affiliation(s)
- Arantxa M Gonzalez-Aguilar
- Mechanical Engineering Department, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Salamanca Gto. 36885, Mexico
| | - Vicente Pérez-García
- Mechanical Engineering Department, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Salamanca Gto. 36885, Mexico
| | - José M Riesco-Ávila
- Mechanical Engineering Department, Engineering Division, Campus Irapuato-Salamanca, University of Guanajuato, Salamanca Gto. 36885, Mexico
| |
Collapse
|
5
|
Dubdub I. Artificial Neural Network Study on the Pyrolysis of Polypropylene with a Sensitivity Analysis. Polymers (Basel) 2023; 15:polym15030494. [PMID: 36771796 PMCID: PMC9918981 DOI: 10.3390/polym15030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Among machine learning (ML) studies, artificial neural network (ANN) analysis is the most widely used technique in pyrolysis research. In this work, the pyrolysis of polypropylene (PP) polymers was established using a thermogravimetric analyzer (TGA) with five sets of heating rates (5-40 K min-1). TGA data was used to exploit an ANN network by achieving a feed-forward backpropagation optimization technique in order to predict the weight-left percentage. Two important ANN model input variables were identified as the heating rate (K min-1) and temperature (K). For the range of TGA values, a 2-10-10-1 network with two hidden layers (Logsig-Tansig) was concluded to be the best structure for predicting the weight-left percentage. The ANN demonstrated a good agreement between the experimental and calculated values, with a high correlation coefficient (R) of greater than 0.9999. The final network was then simulated with the new input data set for effective performance. In addition, a sensitivity analysis was performed to identify the uncertainties associated with the relationship between the output and input parameters. Temperature was found to be a more sensitive input parameter than the heating rate on the weight-left percentage calculation.
Collapse
Affiliation(s)
- Ibrahim Dubdub
- Department of Chemical Engineering, King Faisal University, Al-Hassa 31982, Saudi Arabia
| |
Collapse
|