1
|
Zhu S, Sun H, Mu T, Richel A. Research Progress in 3D Printed Biobased and Biodegradable Polyester/Ceramic Composite Materials: Applications and Challenges in Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2791-2813. [PMID: 39760202 DOI: 10.1021/acsami.4c15719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Transplantation of bone implants is currently recognized as one of the most effective means of treating bone defects. Biobased and biodegradable polyester composites combine the good mechanical and degradable properties of polyester, thereby providing an alternative for bone implant materials. Bone tissue engineering (BTE) accelerates bone defect repair by simulating the bone microenvironment. Composite scaffolds support bone formation and further accelerate the process of bone repair. The introduction of 3D printing technology enables the preparation of scaffolds to be more precise, reproducible, and flexible, which is a very promising development. This review presents the physical properties of BTE scaffolds and summarizes the strategies adopted by domestic and international scholars to improve the properties of scaffolds based on biobased and biodegradable polyester/ceramic composites in recent years. In addition, future development prospects in the field and the challenges of expanding production in clinical applications are presented.
Collapse
Affiliation(s)
- Shunshun Zhu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
- Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium
| |
Collapse
|
2
|
Ghosh R, Singh P, Pandit AH, Tariq U, Bhunia BK, Kumar A. Emerging Technological Advancement for Chronic Wound Treatment and Their Role in Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:7101-7132. [PMID: 39466167 DOI: 10.1021/acsabm.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies. However, traditional therapies need improvisation and have been advanced through breakthrough technologies. The present review spans traditional therapies and further gives an extensive account of advancements in the treatment of chronic wounds. Cutting edge technologies, such as 3D printing, which includes inkjet printing, fused deposition modeling, digital light processing, extrusion-based printing, microneedle array-based therapies, gene therapy, which includes microRNAs (miRNAs) therapy, and smart wound dressings for real time monitoring of wound conditions through assessment of pH, temperature, oxygen, moisture, metabolites, and their use for planning of better treatment strategies have been discussed in detail. The review further gives the future direction of treatments that will aid in lowering the healthcare burden caused due to chronic wounds.
Collapse
Affiliation(s)
- Rupita Ghosh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Prerna Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashiq Hussain Pandit
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ubaid Tariq
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Bibhas Kumar Bhunia
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashok Kumar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| |
Collapse
|
3
|
Perry AC, Adesida AB. Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39311456 DOI: 10.1089/ten.teb.2024.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nasal cartilage serves a crucial structural function for the nose, where rebuilding the cartilaginous framework is an essential aspect of nasal reconstruction. Conventional methods of nasal reconstruction rely on autologous cartilage harvested from patients, which contributes to donor site pain and the potential for site-specific complications. Some patients are not ideal candidates for this procedure due to a lack of adequate substitute cartilage due to age-related calcification, differences in tissue quality, or due to prior surgeries. Tissue engineering, combined with three-dimensional printing technologies, has emerged as a promising method of generating biomimetic tissues to circumvent these issues to restore normal function and aesthetics. We conducted a comprehensive literature review to examine the applications of three-dimensional printing in conjunction with tissue engineering for the generation of nasal cartilage grafts. This review aims to compare various approaches and discuss critical considerations in the design of these grafts.
Collapse
Affiliation(s)
- Alexander C Perry
- Department of Surgery, Division of Plastic Surgery, University of Alberta, Edmonton, Canada
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
- Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
5
|
Lang X, Li L, Li Y, Feng X. Effect of Diabetes on Wound Healing: A Bibliometrics and Visual Analysis. J Multidiscip Healthc 2024; 17:1275-1289. [PMID: 38524865 PMCID: PMC10961066 DOI: 10.2147/jmdh.s457498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Objective The quality of life of diabetic patients is seriously affected by wound healing difficulty, which can lead to increased infection, skin deep tissue injury and continuous pain. By analyzing the research trends and hot spots in this field, the visualization analysis map is constructed. Methods The contents of the selected articles were sorted out and analyzed by bibliometrics. We use CiteSpace, Vosviewer and HistCite to visualize literature information, including national publication statistics, institutions, authors, journal partnerships, and citations of published articles. Results Among the 2942 articles, the United States and China ranked first in both article circulation and TGCS, and many countries also cooperated. The collaboration between schools and research institutions is a core part of dissertation research institution collaboration, with most authors coming from the same institution. Most of the literature studies on the mechanisms and methods of promoting diabetic wound healing. Improving cell function or making innovative attempts in local treatment are the fruits of researchers' efforts to promote diabetic wound healing in recent years. Conclusion Through the metrology method, the time distribution, author institution, cooperation network, research status, research hotspot and development trend of the literature on the influence of diabetes on wound healing were intuitively displayed, which provided a reference for further research and development direction.
Collapse
Affiliation(s)
- Xiaona Lang
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Lu Li
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Yuntao Li
- Integrative Chinese and Western Medicine Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Xin Feng
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
6
|
Moghaddasi M, Özdemir MMM, Noshahr AT, Özadenç HM, Oktay B, Bingöl AB, Arayıcı PP, Eraslan A, Şenel İ, Chifiriuc MC, Üstündağ CB. Blend Electrospinning of Nigella sativa-Incorporating PCL/PLA/HA Fibers and Its Investigation for Bone Healing Applications. ACS OMEGA 2024; 9:10267-10275. [PMID: 38463250 PMCID: PMC10918662 DOI: 10.1021/acsomega.3c07523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 03/12/2024]
Abstract
One of the well-known postoperative complications that requires a number of prophylactic and curative treatments is infection. The implications of postsurgical infections are further exacerbated by the emergence of antibiotic-resistant strains. Reduced effectiveness of synthetic antibiotics has led to an interest in plant-based substances. Extracts obtained from Nigella sativa have been shown to possess effective anti-infectious agents against bacteria frequently seen in bone infections. In this study, a fiber-based bone scaffold containing polycaprolactone, poly(lactic acid), and hydroxyapatite with N. sativa oil at varying concentrations was developed. Solvent electrospinning was used to fabricate the fibers with the specified composition. According to FE-SEM analysis, fibers with average diameters of 751 ± 82, 1000 ± 100, 1020 ± 90, and 1223 ± 112 nm were formed and successful integration of N. sativa oil into the fiber's structure was confirmed via FTIR. Staphylococcus aureus showed moderate susceptibility against the fibers with a maximum inhibition zone diameter of 11.5 ± 1.6 mm. MTT assay analysis exhibited concentration-dependent cell toxicity against fibroblast cells. In short, the antibacterial fibers synthesized in this study possessed antibacterial properties while also allowing moderate accommodation of CDD fibroblast cells at low oil concentrations, which can be a potential application for bone healing and mitigating postsurgical infections.
Collapse
Affiliation(s)
- Mohammad Moghaddasi
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Muhammed Mustafa Mert Özdemir
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Ali Torabkhani Noshahr
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Hüseyin Murat Özadenç
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Busra Oktay
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Ayşe Betül Bingöl
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
| | - Pelin Pelit Arayıcı
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220 Istanbul, Türkiye
| | - Azime Eraslan
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220 Istanbul, Türkiye
| | - İlkay Şenel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220 Istanbul, Türkiye
- Central Research Laboratory, Yıldız Technical University, Esenler, 34220 Istanbul, Türkiye
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), 050568 Bucharest, Romania
- Romanian Academy, 050045 Bucharest, Romania
| | - Cem Bülent Üstündağ
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, 34220 Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, 34220 Istanbul, Türkiye
| |
Collapse
|
7
|
Cesur S. Combination techniques towards novel drug delivery systems manufacturing: 3D PCL scaffolds enriched with tetracycline-loaded PVP nanoparticles. Eur J Pharm Biopharm 2024; 194:36-48. [PMID: 38036066 DOI: 10.1016/j.ejpb.2023.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Drug delivery systems based on synthetic and natural polymers offer a new approach with a capacity to control the release of bio-active agents within time. In this work, we present different designs of Polycaprolactone (PCL) 3D scaffolds containing Polyvinylpyrrolidone (PVP) nanoparticles that can store a hydrophilic drug. The drug delivery system, combined of PCL and PVP polymers fabricated by additive manufacturing, aims for a solution for longer and more stabled drug delivery carrier. The drug, planned to be released to the targeted area, is sprayed with the electrospray method inside PVP nanoparticles on the different layers of the fabricated PCL scaffolds 3D printing. This makes obtaining a layered and porous scaffold and drug-loaded nanoparticles within this structure easier. Obtained PCL scaffolds containing Tetracyclines (Tet) loaded PVP nanoparticles showed that drug encapsulation into the interlayer extended the release time and exhibited a controlled release profile for days. Moreover, produced scaffolds have good biocompatibility and no harmful effects. The combination of 3D scaffolds and drug-loaded nanoparticles aims to develop new functional scaffolds by targeting more efficient and longer-lasting drug delivery.
Collapse
Affiliation(s)
- Sumeyye Cesur
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkey; Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Turkey.
| |
Collapse
|
8
|
Li J, Guo J, Wang BX, Zhang Y, Yao Q, Cheng DH, Lu YH. Wound Microenvironment Self-Adjusting Hydrogels with Thermo-Sensitivity for Promoting Diabetic Wound Healing. Gels 2023; 9:987. [PMID: 38131973 PMCID: PMC10742986 DOI: 10.3390/gels9120987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The hard-healing chronic wounds of diabetics are still one of the most intractable problems in clinical skin injury repair. Wound microenvironments directly affect wound healing speed, but conventional dressings exhibit limited efficacy in regulating the wound microenvironment and facilitating healing. To address this serious issue, we designed a thermo-sensitive drug-controlled hydrogel with wound self-adjusting effects, consisting of a sodium alginate (SA), Antheraeapernyi silk gland protein (ASGP) and poly(N-isopropylacrylamide) (PNIPAM) for a self-adjusting microenvironment, resulting in an intelligent releasing drug which promotes skin regeneration. PNIPAM has a benign temperature-sensitive effect. The contraction, drugs and water molecules expulsion of hydrogel were generated upon surpassing lower critical solution temperatures, which made the hydrogel system have smart drug release properties. The addition of ASGP further improves the biocompatibility and endows the thermo-sensitive drug-controlled hydrogel with adhesion. Additionally, in vitro assays demonstrate that the thermo-sensitive drug-controlled hydrogels have good biocompatibility, including the ability to promote the adhesion and proliferation of human skin fibroblast cells. This work proposes an approach for smart drug-controlled hydrogels with a thermo response to promote wound healing by self-adjusting the wound microenvironment.
Collapse
Affiliation(s)
- Jia Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (J.L.); (Q.Y.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China; (B.-X.W.); (Y.Z.); (D.-H.C.); (Y.-H.L.)
- School of Textiles and Garment, Liaodong University, Dandong 118003, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (J.L.); (Q.Y.)
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Bo-Xiang Wang
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China; (B.-X.W.); (Y.Z.); (D.-H.C.); (Y.-H.L.)
- School of Textiles and Garment, Liaodong University, Dandong 118003, China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China; (B.-X.W.); (Y.Z.); (D.-H.C.); (Y.-H.L.)
- School of Textiles and Garment, Liaodong University, Dandong 118003, China
| | - Qiang Yao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (J.L.); (Q.Y.)
| | - De-Hong Cheng
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China; (B.-X.W.); (Y.Z.); (D.-H.C.); (Y.-H.L.)
- School of Textiles and Garment, Liaodong University, Dandong 118003, China
| | - Yan-Hua Lu
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China; (B.-X.W.); (Y.Z.); (D.-H.C.); (Y.-H.L.)
- School of Textiles and Garment, Liaodong University, Dandong 118003, China
| |
Collapse
|
9
|
Cho M, Woo YR, Cho SH, Lee JD, Kim HS. Metformin: A Potential Treatment for Acne, Hidradenitis Suppurativa and Rosacea. Acta Derm Venereol 2023; 103:adv18392. [PMID: 38078688 PMCID: PMC10726377 DOI: 10.2340/actadv.v103.18392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Metformin is a widely used drug for treatment of diabetes mellitus, due to its safety and efficacy. In addition to its role as an antidiabetic drug, numerous beneficial effects of metformin have enabled its use in various diseases. Considering the anti-androgenic, anti-angiogenic, anti-fibrotic and antioxidant properties of metformin, it may have the potential to improve chronic inflammatory skin diseases. However, further evidence is needed to confirm the efficacy of metformin in dermatological conditions, This review focuses on exploring the therapeutic targets of metformin in acne vulgaris, hidradenitis suppurativa and rosacea, by studying their pathogeneses.
Collapse
Affiliation(s)
- Minah Cho
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Ri Woo
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Hyun Cho
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Deuk Lee
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|