1
|
Ru J, Chen X, Dong X, Hu L, Zhang J, Yang Y. Discovery of a polyurethane-degrading enzyme from the gut bacterium of plastic-eating mealworms. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136159. [PMID: 39437469 DOI: 10.1016/j.jhazmat.2024.136159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Although numerous polyurethane (PU)-degrading enzymes were identified from a diverse array of microorganisms in soil or compost, it is intriguing to investigate whether novel PU-degrading enzymes can be discovered in other biological environments. This study reports the discovery of an enzyme (MTL) for PU plastic degradation from the bacterial strain Mixta tenebrionis BIT-26, isolated from the gut of plastic-eating mealworms. MTL shows significant degradation activity towards three commercial PU substrates, including Impranil®DLN-SD, thermoplastic films (PEGA-HDI), and thermoset foams (PEGA-TDI), by cleaving the ester bonds in the polyester polyol moieties. The structure, molecular docking, and site-directed mutagenesis analyses elucidate the substrate binding model. A combination of structure-based comparison and mutational studies reveals the underlying architecture of the enzyme's specificity. These findings provide a fresh perspective into understanding plastic metabolism in the gut of plastic-eating insects and a prospective path for developing a biodegradation technique for plastic waste disposal.
Collapse
Affiliation(s)
- Jiakang Ru
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xuan Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xuena Dong
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Lin Hu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jianli Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
2
|
Cuartero J, Querejeta JI, Prieto I, Frey B, Alguacil MM. Warming and rainfall reduction alter soil microbial diversity and co-occurrence networks and enhance pathogenic fungi in dryland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175006. [PMID: 39069184 DOI: 10.1016/j.scitotenv.2024.175006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
In this 9-year manipulative field experiment, we examined the impacts of experimental warming (2 °C, W), rainfall reduction (30 % decrease in annual rainfall, RR), and their combination (W + RR) on soil microbial communities and native vegetation in a semi-arid shrubland in south-eastern Spain. Warming had strong negative effects on plant performance across five coexisting native shrub species, consistently reducing their aboveground biomass growth and long-term survival. The impacts of rainfall reduction on plant growth and survival were species-specific and more variable. Warming strongly altered the soil microbial community alpha-diversity and changed the co-occurrence network structure. The relative abundance of symbiotic arbuscular mycorrhizal fungi (AMF) increased under W and W + RR, which could help buffer the direct negative impacts of climate change on their host plants nutrition and enhance their resistance to heat and drought stress. Indicator microbial taxa analyses evidenced that the marked sequence abundance of many plant pathogenic fungi, such as Phaeoacremonium, Cyberlindnera, Acremonium, Occultifur, Neodevriesia and Stagonosporopsis, increased significantly in the W and W + RR treatments. Moreover, the relative abundance of fungal animal pathogens and mycoparasites in soil also increased significantly under climate warming. Our findings indicate that warmer and drier conditions sustained over several years can alter the soil microbial community structure, composition, and network topology. The projected warmer and drier climate favours pathogenic fungi, which could offset the benefits of increased AMF abundance under warming and further aggravate the severe detrimental impacts of increased abiotic stress on native vegetation performance and ecosystem services in drylands.
Collapse
Affiliation(s)
- J Cuartero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland.
| | - J I Querejeta
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - I Prieto
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain; Area de Ecología, Facultad de Ciencias Biológicas y Ambientales, Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - B Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - M M Alguacil
- Departamento de Conservación de Suelos y Agua, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
3
|
Zhang X, Yin Z, Xiang S, Yan H, Tian H. Degradation of Polymer Materials in the Environment and Its Impact on the Health of Experimental Animals: A Review. Polymers (Basel) 2024; 16:2807. [PMID: 39408516 PMCID: PMC11478708 DOI: 10.3390/polym16192807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The extensive use of polymeric materials has resulted in significant environmental pollution, prompting the need for a deeper understanding of their degradation processes and impacts. This review provides a comprehensive analysis of the degradation of polymeric materials in the environment and their impact on the health of experimental animals. It identifies common polymers, delineates their degradation pathways, and describes the resulting products under different environmental conditions. The review covers physical, chemical, and biological degradation mechanisms, highlighting the complex interplay of factors influencing these processes. Furthermore, it examines the health implications of degradation products, using experimental animals as proxies for assessing potential risks to human health. By synthesizing current research, the review focuses on studies related to small organisms (primarily rodents and invertebrates, supplemented by fish and mollusks) to explore the effects of polymer materials on living organisms and underscores the urgency of developing and implementing effective polymer waste management strategies. These strategies are crucial for mitigating the adverse environmental and health impacts of polymer degradation, thus promoting a more sustainable interaction between human activities and the natural environment.
Collapse
Affiliation(s)
- Xiyu Zhang
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Zhenxing Yin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Songbai Xiang
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Huayu Yan
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China; (X.Z.); (Z.Y.); (S.X.)
| | - Hailing Tian
- Laboratory Animal Center, Yanbian University, Yanji 133002, China
| |
Collapse
|
4
|
Osemeahon SA, Akinterinwa A, Fasina E, Andrew FP, Shagal MH, Kareem SA, Reuben U, Onyebuchi PU, Adelagun OR, Esenowo D. Reduction of polystyrene/polyurethane plastic wastes from the environment into binders for water-resistant emulsion paints. Heliyon 2024; 10:e27868. [PMID: 38533006 PMCID: PMC10963325 DOI: 10.1016/j.heliyon.2024.e27868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Waste management is fundamental to resource and environmental sustainability. Expanded polystyrene (EPS) and polyurethane (PU) waste plastics were recycled and applied as binder in emulsion paint formulation. The recycled polystyrene (rPS) and polyurethane (rPU) were blended into composite resins, where toluene was used as the solvent. The blends of rPS and rPU were optimized, while some physicochemical properties of the composite blends (rPS/PU) were evaluated. The results showed that the incorporation of rPU into rPS increased the viscosity (1818 mPa-3924 mPa), rate of gelation (dry-to-touch time: 15 min-0.25 min), moisture content (2.7%-8.1%), moisture uptake (3.2%-5.0%), solid content (48%-53.4%) and density (0.82 g/cm3 to 1.050.82 g/cm3) of the rPS/PU composite resins. Characterization was carried out using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and atomic force microscopy (AFM). The results summarily showed that there are interactions among the rPS and rPU molecules in the composite, where complimentary structural and morphological characteristics were also achieved. The composite resin also exhibited superior bond strength (0.5-4.24 Mpa) on wood, cast mortar, ceramic, and steel surfaces due to its stronger intra- and inter-surface interactions compared to the neat rPS resin. The composite resin was used as a binder in the formulation of emulsion paint. The paint exhibited stronger resistance to water, among other superior properties, when compared to the paints formulated using neat rPS and conventional polyvinyl acetate (PVA) resins. The reduction of plastic waste in this study holds potential for the production of highly water-resistant emulsion paint for outdoor and indoor applications.
Collapse
Affiliation(s)
| | | | - Esther Fasina
- Department of Chemistry, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | - Fartisincha P. Andrew
- Department of Science Laboratory Technology, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | - Muhammed H. Shagal
- Department of Chemistry, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | - Semiu A. Kareem
- Department of Chemical Engineering, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | - Usaku Reuben
- Department of Science Laboratory Technology, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | - Patience U. Onyebuchi
- Department of Science Laboratory Technology, Modibbo Adama University, PMB 2076, Yola, Nigeria
| | | | - David Esenowo
- Department of Chemistry, Modibbo Adama University, PMB 2076, Yola, Nigeria
| |
Collapse
|
5
|
Khan SA, Kojour MAM, Han YS. Recent trends in insect gut immunity. Front Immunol 2023; 14:1272143. [PMID: 38193088 PMCID: PMC10773798 DOI: 10.3389/fimmu.2023.1272143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The gut is a crucial organ in insect defense against various pathogens and harmful substances in their environment and diet. Distinct insect gut compartments possess unique functionalities contributing to their physiological processes, including immunity. The insect gut's cellular composition is vital for cellular and humoral immunity. The peritrophic membrane, mucus layer, lumen, microvilli, and various gut cells provide essential support for activating and regulating immune defense mechanisms. These components also secrete molecules and enzymes that are imperative in physiological activities. Additionally, the gut microbiota initiates various signaling pathways and produces vitamins and minerals that help maintain gut homeostasis. Distinct immune signaling pathways are activated within the gut when insects ingest pathogens or hazardous materials. The pathway induced depends on the infection or pathogen type; include immune deficiency (imd), Toll, JAK/STAT, Duox-ROS, and JNK/FOXO regulatory pathways. These pathways produce different antimicrobial peptides (AMPs) and maintain gut homeostasis. Furthermore, various signaling mechanisms within gut cells regulate insect gut recovery following infection. Although some questions regarding insect gut immunity in different species require additional study, this review provides insights into the insect gut's structure and composition, commensal microorganism roles in Drosophila melanogaster and Tenebrio molitor life cycles, different signaling pathways involved in gut immune systems, and the insect gut post-infection recovery through various signaling mechanisms.
Collapse
Affiliation(s)
- Shahidul Ahmed Khan
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Maryam Ali Mohmmadie Kojour
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Bonn, Germany
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|