1
|
Kulathunga J, Islam S. Wheat arabinoxylans: Insight into structure-function relationships. Carbohydr Polym 2025; 348:122933. [PMID: 39567151 DOI: 10.1016/j.carbpol.2024.122933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
Arabinoxylan (AX), a key non-starch polysaccharide found in the cell walls of cereals like wheat, holds significant importance in the food industry. Recently, it has attracted attention due to its numerous health benefits. While the benefits of wheat arabinoxylans are well-established, a more comprehensive understanding of the relationship between their structure and functional properties is essential. This knowledge will be instrumental in addressing potential concerns in future research focusing on food products containing wheat arabinoxylan. Previous reviews predominantly focused on cereal arabinoxylans, and only a few have addressed wheat arabinoxylan. This review aims to consolidate recent research findings on wheat arabinoxylans, highlighting their health benefits and potential links to structural variations. This will aid future studies in this area. Feruloylated arabinoxylans and arabinoxylan oligosaccharides stand out as the most known for their health benefits. Modifying the chemical structure of arabinoxylans to yield low molecular weight oligosaccharides enhances their immunomodulatory and antioxidant activities, as well as promotes the growth and availability of beneficial gut microbes. The antioxidant activity is positively correlated with the ferulic acid content, whereas it has a negative correlation with arabinose substitution. Nevertheless, additional research using final products is necessary to delve into the potential underlying mechanisms.
Collapse
Affiliation(s)
- Jayani Kulathunga
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Multidisciplinary Studies, Faculty of Urban and Aquatic Bioresources, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Shahidul Islam
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA; Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Western Australia 6150, Australia.
| |
Collapse
|
2
|
Huang J, Sun Z, Zhang G, Zhang Z, Sun F, Han D, Wang J, Zhao J. Ferulic acid mediates microbial fermentation of arabinoxylan to enhance host immunity by suppressing TLR4/NF-κB signaling. Int J Biol Macromol 2025; 298:139810. [PMID: 39814295 DOI: 10.1016/j.ijbiomac.2025.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The study was conducted to explore the relationship between arabinoxylan (AX) structure and microbial fermentation characteristics, and reveal molecular mechanism of AX on regulating immune function of the host. Results indicated that the group of wheat bran AX showed greater activity of feruloyl esterase, production of short chain fatty acids and ferulic acid compared with the blank group (P < 0.05). The AX increased sIgA concentration and protein expression of protein expression of TLR4 and NF-κB (p65), but decreased mRNA expression of pro-inflammatory cytokines in the ileum of weaned pig model, leading to the reduced diarrhea (P < 0.05). The AX increased an abundance of Bifidobacterium pseudocatenulatum, production of butyric acid and ferulic acid in the ileal digesta of pigs (P < 0.05). In a LPS-treated mouse model, butyric acid and ferulic acid combination increased IL-10 concentration and abundance of Bifidobacterium pseudocatenulatum, but reduced mRNA expression of IL-6 and gene expression of TLR4 and NF-κB (p65) in the jejunum. In summary, AX is fermented by gut microbiota to produce ferulic acid, as well as butyric acid, which improved host immunity by promoting relative abundance of Bifidobacterium pseudocatenulatum and suppressing activation of TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Jingyi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ge Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zeyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feize Sun
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
dos Santos AM, da Costa CHS, Martins M, Goldbeck R, Skaf MS. Exploring the Structural and Dynamic Properties of a Chimeric Glycoside Hydrolase Protein in the Presence of Calcium Ions. Int J Mol Sci 2024; 25:11961. [PMID: 39596029 PMCID: PMC11594105 DOI: 10.3390/ijms252211961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
GH10 xylanases and GH62 Arabinofuranosidases play key roles in the breakdown of arabinoxylans and are important tools in various industrial and biotechnological processes, such as renewable biofuel production, the paper industry, and the production of short-chain xylooligosaccharides (XOS) from plant biomass. However, the use of these enzymes in industrial settings is often limited due to their relatively low thermostability and reduced catalytic efficiency. To overcome these limitations, strategies based on enzymatic chimera construction and the use of metal ions and other cofactors have been proposed to produce new recombinant enzymes with improved catalytic activity and thermostability. Here, we examine the conformational dynamics of a GH10-GH62 chimera at different calcium ion concentrations through molecular dynamics simulations. While experimental data have demonstrated improved activity and thermostability in GH10-GH62 chimera, the mechanistic basis for these enhancements remains unclear. We explored the structural details of the binding subsites of Ca2+ in the parental enzymes GH62 from Aspergillus fumigatus (Afafu62) and a recombinant GH10 from Cryptococcus flavescens (Xyn10cf), as well as their chimeric combination, and how negatively charged electron pairing located at the protein surface affects Ca2+ capture. The results indicate that Ca2+ binding significantly contributes to structural stability and catalytic cavity modulation in the chimera, particularly evident at a concentration of 0.01 M. This effect, not observed in the parental GH10 and GH62 enzymes, highlights how Ca2+ enhances stability in the overall chimeric enzyme, while supporting a larger cavity volume in the chimera GH62 subunit. The increased catalytic site volume and reduced structural flexibility in response to Ca2+ suggest that calcium binding minimizes non-productive conformational states, which could potentially improve catalytic turnover. The findings presented here may aid in the development of more thermostable and efficient catalytic systems.
Collapse
Affiliation(s)
- Alberto M. dos Santos
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, SP, Brazil; (A.M.d.S.); (C.H.S.d.C.)
| | - Clauber H. S. da Costa
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, SP, Brazil; (A.M.d.S.); (C.H.S.d.C.)
| | - Manoela Martins
- School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Rosana Goldbeck
- School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Munir S. Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas 13084-862, SP, Brazil; (A.M.d.S.); (C.H.S.d.C.)
| |
Collapse
|
4
|
Victoria Obayomi O, Folakemi Olaniran A, Olugbemiga Owa S. Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review. J Funct Foods 2024; 119:106337. [DOI: 10.1016/j.jff.2024.106337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
5
|
Huang M, Bai J, Buccato DG, Zhang J, He Y, Zhu Y, Yang Z, Xiao X, Daglia M. Cereal-Derived Water-Unextractable Arabinoxylans: Structure Feature, Effects on Baking Products and Human Health. Foods 2024; 13:2369. [PMID: 39123560 PMCID: PMC11311280 DOI: 10.3390/foods13152369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Arabinoxylans (AXs) are non-starch polysaccharides with complex structures naturally occurring in grains (i.e., barley, corn, and others), providing many health benefits, especially as prebiotics. AXs can be classified as water-extractable (WEAX) and water-unextractable (WUAX) based on their solubility, with properties influenced by grain sources and extraction methods. Numerous studies show that AXs exert an important health impact, including glucose and lipid metabolism regulation and immune system enhancement, which is induced by the interactions between AXs and the gut microbiota. Recent research underscores the dependence of AX physiological effects on structure, advocating for a deeper understanding of structure-activity relationships. While systematic studies on WEAX are prevalent, knowledge gaps persist regarding WUAX, despite its higher grain abundance. Thus, this review reports recent data on WUAX structural properties (chemical structure, branching, and MW) in cereals under different treatments. It discusses WUAX applications in baking and the benefits deriving from gut fermentation.
Collapse
Affiliation(s)
- Manchun Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Zihan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Rudjito RC, Matute AC, Jiménez-Quero A, Olsson L, Stringer MA, Krogh KBRM, Eklöf J, Vilaplana F. Integration of subcritical water extraction and treatment with xylanases and feruloyl esterases maximises release of feruloylated arabinoxylans from wheat bran. BIORESOURCE TECHNOLOGY 2024; 395:130387. [PMID: 38295956 DOI: 10.1016/j.biortech.2024.130387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Wheat bran is an abundant and low valued agricultural feedstock rich in valuable biomolecules as arabinoxylans (AX) and ferulic acid with important functional and biological properties. An integrated bioprocess combining subcritical water extraction (SWE) and enzymatic treatments has been developed for maximised recovery of feruloylated arabinoxylans and oligosaccharides from wheat bran. A minimal enzymatic cocktail was developed combining one xylanase from different glycosyl hydrolase families and a feruloyl esterase. The incorporation of xylanolytic enzymes in the integrated SWE bioprocess increased the AX yields up to 75%, higher than traditional alkaline extraction, and SWE or enzymatic treatment alone. The process isolated AX with tailored molecular structures in terms of substitution, molar mass, and ferulic acid, which can be used for structural biomedical applications, food ingredients and prebiotics. This study demonstrates the use of hydrothermal and enzyme technologies for upcycling agricultural side streams into functional bioproducts, contributing to a circular food system.
Collapse
Affiliation(s)
- Reskandi C Rudjito
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Alvaro C Matute
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Amparo Jiménez-Quero
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | | | | | - Jens Eklöf
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden; Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
7
|
Xue H, Hao Z, Gao Y, Cai X, Tang J, Liao X, Tan J. Research progress on the hypoglycemic activity and mechanisms of natural polysaccharides. Int J Biol Macromol 2023; 252:126199. [PMID: 37562477 DOI: 10.1016/j.ijbiomac.2023.126199] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The incidence of diabetes, as a metabolic disease characterized by high blood sugar levels, is increasing every year. The predominantly western medicine treatment is associated with certain side effects, which has prompted people to turn their attention to natural active substances. Natural polysaccharide is a safe and low-toxic natural substance with various biological activities. Hypoglycemic activity is one of the important biological activities of natural polysaccharides, which has great potential for development. A systematic review of the latest research progress and possible molecular mechanisms of hypoglycemic activity of natural polysaccharides is of great significance for better understanding them. In this review, we systematically reviewed the relationship between the hypoglycemic activity of polysaccharides and their structure in terms of molecular weight, monosaccharide composition, and glycosidic bonds, and summarized underlying molecular mechanisms the hypoglycemic activity of natural polysaccharides. In addition, the potential mechanisms of natural polysaccharides improving the complications of diabetes were analyzed and discussed. This paper provides some valuable insights and important guidance for further research on the hypoglycemic mechanisms of natural polysaccharides.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zitong Hao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
8
|
Rudjito RC, Jiménez-Quero A, Muñoz MDCC, Kuil T, Olsson L, Stringer MA, Krogh KBRM, Eklöf J, Vilaplana F. Arabinoxylan source and xylanase specificity influence the production of oligosaccharides with prebiotic potential. Carbohydr Polym 2023; 320:121233. [PMID: 37659797 DOI: 10.1016/j.carbpol.2023.121233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 07/22/2023] [Indexed: 09/04/2023]
Abstract
Cereal arabinoxylans (AXs) are complex polysaccharides in terms of their pattern of arabinose and ferulic acid substitutions, which influence their properties in structural and nutritional applications. We have evaluated the influence of the molecular structure of three AXs from wheat and rye with distinct substitutions on the activity of β-xylanases from different glycosyl hydrolase families (GH 5_34, 8, 10 and 11). The arabinose and ferulic acid substitutions influence the accessibility of the xylanases, resulting in specific profiles of arabinoxylan-oligosaccharides (AXOS). The GH10 xylanase from Aspergillus aculeatus (AcXyn10A) and GH11 from Thermomyces lanuginosus (TlXyn11) showed the highest activity, producing larger amounts of small oligosaccharides in shorter time. The GH8 xylanase from Bacillus sp. (BXyn8) produced linear xylooligosaccharides and was most restricted by arabinose substitution, whereas GH5_34 from Gonapodya prolifera (GpXyn5_34) required arabinose substitution and produced longer (A)XOS substituted on the reducing end. The complementary substrate specificity of BXyn8 and GpXyn5_34 revealed how arabinoses were distributed along the xylan backbones. This study demonstrates that AX source and xylanase specificity influence the production of oligosaccharides with specific structures, which in turn impacts the growth of specific bacteria (Bacteroides ovatus and Bifidobacterium adolescentis) and the production of beneficial metabolites (short-chain fatty acids).
Collapse
Affiliation(s)
- Reskandi C Rudjito
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden.
| | - Amparo Jiménez-Quero
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden.
| | - Maria Del Carmen Casado Muñoz
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden.
| | - Teun Kuil
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden.
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden.
| | | | | | - Jens Eklöf
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark.
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden; Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
9
|
Song Z, Xiong X, Huang G. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. ULTRASONICS SONOCHEMISTRY 2023; 95:106416. [PMID: 37094477 PMCID: PMC10160789 DOI: 10.1016/j.ultsonch.2023.106416] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Antitumor, antioxidant, hypoglycemic, and immunomodulatory properties are all exhibited by maize polysaccharides. With the increasing sophistication of maize polysaccharide extraction methods, enzymatic method is no longer limited to a single enzyme to extract polysaccharides, and is more often used in combination with ultrasound or microwave, or combination with different enzymes. Ultrasound has a good cell wall-breaking effect, making it easier to dislodge lignin and hemicellulose from the cellulose surface of the maize husk. The "water extraction and alcohol precipitation" method is the simplest but most resource- and time-consuming process. However, the "ultrasound-assisted extraction" and "microwave-assisted extraction" methods not only compensate for the shortcoming, but also increase the extraction rate. Herein, the preparation, structural analysis, and activities of maize polysaccharides were analyzed and discussed.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|