1
|
Akinsemolu AA, Idowu AM, Onyeaka HN. Recycling Technologies for Biopolymers: Current Challenges and Future Directions. Polymers (Basel) 2024; 16:2770. [PMID: 39408479 PMCID: PMC11478719 DOI: 10.3390/polym16192770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Plastic pollution is a major driver of climate change that is associated with biodiversity loss, greenhouse gas emissions, and negative soil, plant, animal, and human health. One of the solutions that has been proposed and is currently reducing the adverse effects of plastic on the planet is the replacement of synthetic plastics with biopolymers. The biodegradable polymers have been adapted for most of the applications of synthetic plastic. However, their use and disposal present some sustainability challenges. Recycling emerges as an effective way of promoting the sustainability of biopolymer use. In this article, we review recycling as a viable solution to improve the sustainability of biopolymers, emphasizing the current types and technologies employed in biopolymer recycling and the challenges faced in their adoption. Our exploration of the future directions in the conversion of biopolymers into new polymers for reuse establishes a connection between established continuous technological innovation, integration into circular economy models, and the establishment and strengthening of collaborations among key stakeholders in relevant industries as necessary steps for the adoption, full utilization, and improvement of recycling technologies for biopolymers. By connecting these factors, this study lays a foundation for the establishment of a roadmap for improved biopolymer recycling technologies and processes that promote the sustainability of synthetic plastic alternatives.
Collapse
Affiliation(s)
- Adenike A. Akinsemolu
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- The Green Institute, Ondo 351101, Nigeria
| | - Adetola M. Idowu
- Faculty of Life Sciences, Rhein-Waal University of Applied Science, 47533 Kleve, Germany;
| | - Helen N. Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Vanaraj R, Suresh Kumar SM, Mayakrishnan G, Rathinam B, Kim SC. A Current Trend in Efficient Biopolymer Coatings for Edible Fruits to Enhance Shelf Life. Polymers (Basel) 2024; 16:2639. [PMID: 39339103 PMCID: PMC11435994 DOI: 10.3390/polym16182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, biopolymer coatings have emerged as an effective approach for extending the shelf life of edible fruits. The invention of biopolymer coverings has emerged as an innovation for extending fruit shelf life. Natural polymers, like chitosan, alginate, and pectin, are used to create these surfaces, which have several uses, including creating a barrier that prevents water evaporation, the spread of living microbes, and respiratory movement. These biopolymer coatings' primary benefits are their environmental friendliness and lack of damage. This study highlights the advancements made in the creation and usage of biopolymer coatings, highlighting how well they preserve fruit quality, reduce post-harvest losses, and satisfy consumer demand for natural preservation methods. This study discusses the usefulness of the biopolymer coating in terms of preserving fruit quality, reducing waste, and extending the product's shelf life. Biopolymer coatings' potential as a sustainable solution for synthetic preservatives in the fruit sector is highlighted as are formulation process advances that combine natural ingredients and environmental implications. This essay focuses on the essential methods, such as new natural additives, as well as the environmental effect of biopolymer coatings, which are safe and healthy commercial alternatives.
Collapse
Affiliation(s)
- Ramkumar Vanaraj
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam 602105, India;
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan;
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 Univ. Rd., Sec. 3, Douliu 64002, Taiwan
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Wawrzyńczak A, Chudzińska J, Feliczak-Guzik A. Metal and Metal Oxides Nanoparticles as Nanofillers for Biodegradable Polymers. Chemphyschem 2024; 25:e202300823. [PMID: 38353297 DOI: 10.1002/cphc.202300823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Polymeric materials, despite their many undeniable advantages, nowadays are a major environmental challenge. Thus, in recent years biodegradable polymer matrices have been widely used in various sectors, including the medicinal, chemical, and packaging industry. Their widespread use is due to the properties of biodegradable polymer matrices, among which are their adjustable physicochemical and mechanical properties, as well as lower environmental impact. The properties of biodegradable polymers can be modified with various types of nanofillers, among which clays, organic and inorganic nanoparticles, and carbon nanostructures are most commonly used. The performance of the final product depends on the size and uniformity of the used nanofillers, as well as on their distribution and dispersion in the polymer matrix. This literature review aims to highlight new research results on advances and improvements in the synthesis, physicochemical properties and applications of biodegradable polymer matrices modified with metal nanoparticles and metal oxides.
Collapse
Affiliation(s)
- Agata Wawrzyńczak
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Jagoda Chudzińska
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| |
Collapse
|
4
|
Quintero V, Osma JF, Azimov U, Nabarlatz D. Multifunctional Eco-Friendly Adsorbent Cryogels Based on Xylan Derived from Coffee Residues. MEMBRANES 2024; 14:108. [PMID: 38786942 PMCID: PMC11123184 DOI: 10.3390/membranes14050108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Agricultural and animal farming practices contribute significantly to greenhouse gas (GHG) emissions such as NH3, CH4, CO2, and NOx, causing local environmental concerns involving health risks and water/air pollution. A growing need to capture these pollutants is leading to the development of new strategies, including the use of solid adsorbents. However, commonly used adsorbent materials often pose toxicity and negative long-term environmental effects. This study aimed to develop responsive eco-friendly cryogels using xylan extracted from coffee parchment, a typical residue from coffee production. The crosslinking in cryogels was accomplished by "freeze-thawing" and subsequent freeze-drying. Cryogels were characterized in terms of morphology by using scanning electron microscopy, porosity, and density by the liquid saturation method and also moisture adsorption and ammonia adsorption capacity. The analysis showed that the porosity in the cryogels remained around 0.62-0.42, while the apparent densities varied from 0.14 g/cm3 to 0.25 g/cm3. The moisture adsorption capacity was the highest at the highest relative humidity level (80%), reaching 0.25-0.43 g of water per gram of sample; the amount of water adsorbed increased when the xylan content in the cryogel increased up to 10% w/v, which was consistent with the hygroscopic nature of xylan. The ammonia adsorption process was modeled accurately by a pseudo-second-order equation, where the maximum adsorption capacity in equilibrium reached 0.047 mg NH3/g when xylan reached 10% w/v in cryogels, indicating a chemisorption process. The cryogels under investigation hold promise for ammonia adsorption applications and GHG separation, offering a sustainable alternative for gas-capturing processes.
Collapse
Affiliation(s)
- Valentina Quintero
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander, Cra. 27 N°9, Bucaramanga 680002, Colombia;
| | - Johann F. Osma
- BioAgro Center, Innovation and Technology Inc., Guasca 251217, Colombia;
| | - Ulugbek Azimov
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Debora Nabarlatz
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander, Cra. 27 N°9, Bucaramanga 680002, Colombia;
| |
Collapse
|
5
|
Lavanya M, Namasivayam SKR, John A. Developmental Formulation Principles of Food Preservatives by Nanoencapsulation-Fundamentals, Application, and Challenges. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04943-1. [PMID: 38713338 DOI: 10.1007/s12010-024-04943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
The role of food additives is to preserve food by extending shelf life and limiting harmful microorganism proliferation. They prevent spoilage by enhancing the taste and safety of food by utilizing beneficial microorganisms and their antimicrobial metabolites. Current advances in food preservation and processing utilize green technology principles for green preservative formulation, enhancing nutrition and supplying essential micronutrients safely, while also improving quality, packaging, and food safety. Encapsulation is gaining attention for its potential to protect delicate materials from oxidative degradation and extend their shelf life, thereby ensuring optimal nutrient uptake. Nanoencapsulation of bioactive compounds has significantly improved the food, pharmaceutical, agriculture, and nutraceutical industries by protecting antioxidants, vitamins, minerals, and essential fatty acids by controlling release and ensuring delivery to specific sites in the human body. This emerging area is crucial for future industrial production, improving the sensory properties of foods like color, taste, and texture. Research on encapsulated bioactive compounds like bacteriocins, LAB, natamycin, polylysine, and bacteriophage is crucial for their potential antioxidant and antimicrobial activities in food applications and the food industry. This paper reviews nanomaterials used as food antimicrobial carriers, including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers, to protect natural food antimicrobials from degradation and improve antimicrobial activity. This review discusses nanoencapsulation techniques for biopreservative agents like nisin, poly lysine, and natamycin, focusing on biologically-derived polymeric nanofibers, nanocarriers, nanoliposomes, and polymer-stabilized metallic nanoparticles. Nanomaterials, in general, improve the dispersibility, stability, and availability of bioactive substances, and this study discusses the controlled release of nanoencapsulated biopreservative agents.
Collapse
Affiliation(s)
- M Lavanya
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Applied Research (SIMATS), Chennai, Tamil Nadu, 602105, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Applied Research (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Arun John
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India
| |
Collapse
|
6
|
Çetin MY, Bağrıaçık B, Annagür HM, Topoliński S. Improvement of Geotechnical Properties of Clayey Soil Using Biopolymer and Ferrochromium Slag Additives. Polymers (Basel) 2024; 16:1306. [PMID: 38794499 PMCID: PMC11124907 DOI: 10.3390/polym16101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The geotechnical properties of clay soil and its mixtures with different proportions (0.75%, 0.85%, 1%, and 1.15%) of Agar Gum biopolymer and Ferrochromium Slag (0.25%, 0.50%, 0.75%, and 1%), having various curing times and freeze-thaw cycles, were studied through a series of soil mechanical tests to investigate possibilities to improve its undesired/problematic plasticity, compaction, and shear strength characteristics. The results revealed that treatment with an optimal ratio of 1% Agar Gum and 1% Ferrochromium Slag alone, as well as together with, improved the geotechnical properties of the clay soil considerably. Both the unconfined and shear strength properties, along with the cohesion and internal friction angle, increased as much as 47 to 173%, depending on the curing time. The higher the curing time, the higher the shear strength, cohesion, and internal friction angle are up to 21 days. Deteriorating the soil structure and/or fabric, freeze-thaw cycles, however, seem to have an adverse effect on the strength. The higher the freeze-thaw cycle, the lower the shear strength, cohesion, and internal friction angle. Also, some improvements in the plasticity and compaction properties were determined, and environmental concerns regarding Ferrochromium Slag usage have been addressed.
Collapse
Affiliation(s)
- Mustafa Yasin Çetin
- Department of Civil Engineering, Faculty of Engineering, Çukurova University, Adana 01330, Turkey;
| | - Baki Bağrıaçık
- Department of Civil Engineering, Faculty of Engineering, Çukurova University, Adana 01330, Turkey;
| | - Hatice Merve Annagür
- Department of Civil Engineering, Faculty of Engineering, Toros University, Mersin 33140, Turkey;
| | - Szymon Topoliński
- Department of Road Engineering, Transport and Geotechnics, Faculty of Civil and Environmental Engineering and Architecture, Bydgoszcz University of Science and Technology, 85796 Bydgoszcz, Poland;
| |
Collapse
|
7
|
Siddiqui SA, Yang X, Deshmukh RK, Gaikwad KK, Bahmid NA, Castro-Muñoz R. Recent advances in reinforced bioplastics for food packaging - A critical review. Int J Biol Macromol 2024; 263:130399. [PMID: 38403219 DOI: 10.1016/j.ijbiomac.2024.130399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Recently, diversifying the material, method, and application in food packaging has been massively developed to find more environment-friendly materials. However, the mechanical and barrier properties of the bioplastics are major hurdles to expansion in commercial realization. The compositional variation with the inclusion of different fillers could resolve the lacking performance of the bioplastic. This review summarizes the various reinforcement fillers and their effect on bioplastic development. In this review, we first discussed the status of bioplastics and their definition, advantages, and limitations regarding their performance in the food packaging application. Further, the overview of different fillers and development methods has been discussed thoroughly. The application of reinforced bioplastic for food packaging and its effect on food quality and shelf life are highlighted. The environmental issues, health concerns, and future perspectives of the reinforced bioplastic are also discussed at the end of the manuscript. Adding different fillers into the bioplastic improves physical, mechanical, barrier, and active properties, which render the required protective functions to replace conventional plastic for food packaging applications. Various fillers, such as natural and chemically synthesized, could be incorporated into the bioplastic, and their overall properties improve significantly for the food packaging application.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Japan.
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861 Yogyakarta, Indonesia; Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland.
| |
Collapse
|
8
|
Nath PC, Sharma R, Debnath S, Nayak PK, Roy R, Sharma M, Inbaraj BS, Sridhar K. Recent advances in production of sustainable and biodegradable polymers from agro-food waste: Applications in tissue engineering and regenerative medicines. Int J Biol Macromol 2024; 259:129129. [PMID: 38181913 DOI: 10.1016/j.ijbiomac.2023.129129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Agro-food waste is a rich source of biopolymers such as cellulose, chitin, and starch, which have been shown to possess excellent biocompatibility, biodegradability, and low toxicity. These properties make biopolymers from agro-food waste for its application in tissue engineering and regenerative medicine. Thus, this review highlighted the properties, processing methods, and applications of biopolymers derived from various agro-food waste sources. We also highlight recent advances in the development of biopolymers from agro-food waste and their potential for future tissue engineering and regenerative medicine applications, including drug delivery, wound healing, tissue engineering, biodegradable packaging, excipients, dental applications, diagnostic tools, and medical implants. Additionally, it explores the challenges, prospects, and future directions in this rapidly evolving field. The review showed the evolution of production techniques for transforming agro-food waste into valuable biopolymers. However, these biopolymers serving as the cornerstone in scaffold development and drug delivery systems. With their role in wound dressings, cell encapsulation, and regenerative therapies, biopolymers promote efficient wound healing, cell transplantation, and diverse regenerative treatments. Biopolymers support various regenerative treatments, including cartilage and bone regeneration, nerve repair, and organ transplantation. Overall, this review concluded the potential of biopolymers from agro-food waste as a sustainable and cost-effective solution in tissue engineering and regenerative medicine, offering innovative solutions for medical treatments and promoting the advancement of these fields.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Food Technology, Shri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Rupak Roy
- SHRM Biotechnologies Pvt Ltd., Kolkata 700155, India
| | | | | | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|