1
|
Wang X, Wang L, Liu C, Cao Y, He P, Cui Y, Li H. Self-Healing Polyurethane Elastomers with Superior Tensile Strength and Elastic Recovery Based on Dynamic Oxime-Carbamate and Hydrogen Bond Interactions. Macromol Rapid Commun 2024; 45:e2400022. [PMID: 38704741 DOI: 10.1002/marc.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/13/2024] [Indexed: 05/07/2024]
Abstract
The preparation of self-healing polyurethane elastomers (PUEs) incorporating dynamic bonds is of considerable practical significance. However, developing a PUE with outstanding mechanical properties and high self-healing efficiency poses a significant challenge. Herein, this work has successfully developed a series of self-healing PUEs with various outstanding properties through rational molecular design. These PUEs incorporate m-xylylene diisocyanate and reversible dimethylglyoxime as hard segment, along with polytetramethylene ether glycol as soft segment. A significant amount of dynamic oxime-carbamate and hydrogen bonds are formed in hard segment. The microphase separated structure of the PUEs enables them to be colorless with a transparency of >90%. Owing to the chemical composition and multiple dynamic interactions, the PUEs are endowed with ultra-high tensile strength of 34.5 MPa, satisfactory toughness of 53.9 MJ m-3, and great elastic recovery both at low and high strains. The movement of polymer molecular chains and the dynamic reversible interactions render a self-healing efficiency of 101% at 70 °C. In addition, this self-healing polyurethane could still maintain high mechanical properties after recycling. This study provides a design strategy for the preparation of a comprehensive polyurethane with superior overall performance, which holds wide application prospects in the fields of flexible displays and solar cells.
Collapse
Affiliation(s)
- Xue Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liguo Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Liu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Cao
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng He
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Huiquan Li
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Functional Zwitterionic Polyurethanes: State-of-the-Art Review. Macromol Rapid Commun 2024; 45:e2300606. [PMID: 38087799 DOI: 10.1002/marc.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Recent advancements in bioengineering and medical devices have been greatly influenced and dominated by synthetic polymers, particularly polyurethanes (PUs). PUs offer customizable mechanical properties and long-term stability, but their inherent hydrophobic nature poses challenges in practically biological application processes, such as interface high friction, strong protein adsorption, and thrombosis. To address these issues, surface modifications of PUs for generating functionally hydrophilic layers have received widespread attention, but the durability of generated surface functionality is poor due to irreversible mechanical wear or biodegradation. As a result, numerous researchers have investigated bulk modification techniques to incorporate zwitterionic polymers or groups onto the main or side chains of PUs, thereby improving their hydrophilicity and biocompatibility. This comprehensive review presents an extensive overview of notable zwitterionic PUs (ZPUs), including those based on phosphorylcholine, sulfobetaine, and carboxybetaine. The review explores their wide range of biomedical applications, from blood-contacting devices to antibacterial coatings, fouling-resistant marine coatings, separation membranes, lubricated surfaces, and shape memory and self-healing materials. Lastly, the review summarizes the challenges and future prospects of ZPUs in biological applications.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Xiaoduo Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|