1
|
Liang C, Wang Y, Zhao R, Du J, Yao J, Khan AUR, Zhu Y, Xia H, Zhu T. Multifunctional hybrid poly(ester-urethane)urea/resveratrol electrospun nanofibers for a potential vascularizing matrix. SOFT MATTER 2024; 21:55-67. [PMID: 39624984 DOI: 10.1039/d4sm00937a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
The challenges for clinical application of small-diameter vascular graft are mainly acute/chronic thrombosis, inadequate endothelialization, intimal hyperplasia caused by inflammation, oxidative stress, and the mismatch of mechanical compliance after transplantation. How to construct an effective regenerative microenvironment through a material with uniform dispersion of active components is the premise of maintaining patency of a vascular graft. In this study, we have compounded poly(ester-urethane)urea (PEUU) with various optimized concentrations of resveratrol (Res) by homogeneous emulsion blending, followed by electrospinning into the hybrid PEUU/Res nanofibers (P/R-0, P/R-0.5, P/R-1.0, and P/R-1.5). Then the microstructure, surface wettability, mechanical properties, degradation, Res sustained release properties, hemocompatibility, and cytocompatibility of P/R were evaluated comprehensively. The results indicate that Res can be gradually released from the P/R, and both the hydrophilicity and antioxidant ability of the nanofiber gradually increase with the increase of Res content. Moreover, with the increase of Res, the viability and proliferation behavior of HUVECs were significantly improved. Meanwhile, tube formation and migration experiments showed that Res promoted the formation of a neovascularization network. In brief, it is concluded that P/R-1.0 is the optimal candidate with a uniform microstructure, moderate wettability, optimized mechanical properties, reliable hemocompatibility and cytocompatibility, and strongest ability to promote endothelial growth for the vascularizing matrix.
Collapse
Affiliation(s)
- Chen Liang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Yanan Wang
- Department of Minimally Invasive Spine Surgery, Shandong Wendeng Orthopedic Hospital, 1 Fengshan Rd., Weihai 264400, Shandong, P. R. China
| | - Renliang Zhao
- Orthopedics Research Institute, Trauma Medical Center, Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Ln., Chengdu 610041, Sichuan, P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Jin Yao
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Atta Ur Rehman Khan
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China.
- Shanghai Key Laboratory of Pancreatic Neoplasms Translational Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd., Shanghai 200025, P. R. China
| | - Huitang Xia
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Rd., Jinan 250014, Shandong, P. R. China.
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, 16766 Jingshi Rd., Jinan 250014, Shangdong, P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
| |
Collapse
|
2
|
Sun L, Jin S, Feng Y, Liu Y. Antibacterial nonwoven materials in medicine and healthcare. J Biomater Appl 2024:8853282241297872. [PMID: 39505384 DOI: 10.1177/08853282241297872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Bacterial infection has always been a severe challenge for mankind. The use of antibacterial nonwoven materials provides a lot of convenience in daily life and clinical practice grammar revision, it has become an important solution to avoid bacterial infection in clinical and daily life. This review systematically examines the spin bonding, melt blown, hydroneedling and electrospinning methods of nonwoven fabrication materials, and summarizes the antibacterial nonwoven materials fabrication methods. Finally, the review discusses the applications of antibacterial nonwoven materials for medical protection, external medical and healthcare, external circulation medical care implantable medical and healthcare and intelligent protection and detection. This comprehensive overview aims to provide valuable insights for the advancement of antibacterial nonwoven materials in the domain of medicine and health care. In the future, antibacterial nonwoven materials are expected to evolve towards biodegradability, composite materials, functionalization, minimally invasive techniques, diversification, and intelligence, thereby holding immense potential in healthcare.
Collapse
Affiliation(s)
- Lijuan Sun
- College of Aeronautical Science and Engineering, Yantai Nanshan University, Yantai, PR China
| | - Shixin Jin
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, PR China
| | - Yan Feng
- School of Textile Science and Engineering, Tiangong University, Tianjin, PR China
| | - Yanling Liu
- Textile New Materials Research Institute, Shandong Nanshan Fashion Sci-Tech Co., Ltd., Yantai, PR China
| |
Collapse
|
3
|
Xiong Y, Lu X, Ma X, Cao J, Pan J, Li C, Zheng Y. Preparation of fibre-reinforced PLA-collagen@PLA-PCL@PCL-gelatin three-layer vascular graft by EDC/NHS cross-linking and its performance study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2343-2362. [PMID: 39037965 DOI: 10.1080/09205063.2024.2380567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024]
Abstract
In this study, a three-layer small diameter artificial vascular graft with a structure similar to that of natural blood vessels was first constructed by triple-step electrospinning technology, in which polylactic acid (PLA) and collagen (COL) were used for the inner layer, polylactic acid and polycaprolactone (PCL) was used for the middle layer and polycaprolactone and gelatin was used for the outer layer. The properties of the artificial vascular graft were adjusted by the EDC/NHS cross-linking agent through the reaction between the collagen or gelatine and EDC/NHS. The mechanical and hydrophilic properties of the cross-linked artificial vessels were substantially enhanced, with a maximum stress of 9.56 MPa in the axial direction and 9.31 MPa in the radial direction for the P/C (4:1) vascular graft, which exceeded that of many textile-based and natural vascular grafts. The increased hydrophilicity of the inner layer of the vessel before crosslinking was due to the addition of COL, and the inner layer of the artificial vessel after crosslinking had a substantial increase in hydrophilicity due to the production of a more hydrophilic urea derivative. The increased hydrophilicity led to easier cell adhesion to the inner layer of the artificial vessel, especially for the P/C (2:1) vascular graft, where the cell proliferation rate and adhesion were high due to COL incorporation and cross-linking. The three-layer vascular grafts studied did not lead to haemolysis. Therefore, the EDC/NHS cross-linked three-layer vascular graft had good mechanical properties, hydrophilicity, anticoagulation and could enhance cell adhesion and proliferation.
Collapse
Affiliation(s)
- Yue Xiong
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Xingjian Lu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Xiaoman Ma
- Zhejiang Accupath Smart Mfg Grp Co Ltd, Jiaxing, P.R. China
| | - Jun Cao
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Jiaqi Pan
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Chaorong Li
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Yingying Zheng
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
4
|
Liu Y, Gao Z, Yu X, Lin W, Lian H, Meng Z. Recent Advances in the Fabrication and Performance Optimization of Polyvinyl Alcohol Based Vascular Grafts. Macromol Biosci 2024; 24:e2400093. [PMID: 38801024 DOI: 10.1002/mabi.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/11/2024] [Indexed: 05/29/2024]
Abstract
Cardiovascular disease is one of the diseases with the highest morbidity and mortality rates worldwide, and coronary artery bypass grafting (CABG) is a fast and effective treatment. More researchers are investigating in artificial blood vessels due to the limitations of autologous blood vessels. Despite the availability of large-diameter vascular grafts (Ø > 6 mm) for clinical use, small-diameter vascular grafts (Ø < 6 mm) have been a challenge for researchers to overcome in recent years. Vascular grafts made of polyvinyl alcohol (PVA) and PVA-based composites have excellent biocompatibility and mechanical characteristics. In order to gain a clearer and more specific understanding of the progress in PVA vascular graft research, particularly regarding the preparation methods, principles, and functionality of PVA vascular graft, this article discusses the mechanical properties, biocompatibility, blood compatibility, and other properties of PVA vascular graft prepared or enhanced with different blends using various techniques that mimic natural blood vessels. The findings reveal the feasibility and promising potential of PVA or PVA-based composite materials as vascular grafts.
Collapse
Affiliation(s)
- Yixuan Liu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zichun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinrong Yu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenjiao Lin
- Qingmao Technology (Shenzhen) Co., LTD, Shenzhen, China
| | - He Lian
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhaoxu Meng
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
5
|
Zhuravleva IY, Shadanov AA, Surovtseva MA, Vaver AA, Samoylova LM, Vladimirov SV, Timchenko TP, Kim II, Poveshchenko OV. Which Gelatin and Antibiotic Should Be Chosen to Seal a Woven Vascular Graft? Int J Mol Sci 2024; 25:965. [PMID: 38256039 PMCID: PMC10816219 DOI: 10.3390/ijms25020965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Among the vascular prostheses used for aortic replacement, 95% are woven or knitted grafts from polyester fibers. Such grafts require sealing, for which gelatin (Gel) is most often used. Sometimes antibiotics are added to the sealant. We used gelatin type A (GelA) or type B (GelB), containing one of the three antibiotics (Rifampicin, Ceftriaxone, or Vancomycin) in the sealant films. Our goal was to study the effect of these combinations on the mechanical and antibacterial properties and the cytocompatibility of the grafts. The mechanical characteristics were evaluated using water permeability and kinking radius. Antibacterial properties were studied using the disk diffusion method. Cytocompatibility with EA.hy926 endothelial cells was assessed via indirect cytotoxicity, cell adhesion, and viability upon direct contact with the samples (3, 7, and 14 days). Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to visualize the cells in the deep layers of the graft wall. "GelA + Vancomycin" and "GelB + vancomycin" grafts showed similar good mechanical characteristics (permeability~10 mL/min/cm2, kinking radius 21 mm) and antibacterial properties (inhibition zones for Staphilococcus aureus~15 mm, for Enterococcus faecalis~12 mm). The other samples did not exhibit any antibacterial properties. The cytocompatibility was good in all the tested groups, but endothelial cells exhibited the ability to self-organize capillary-like structures only when interacting with the "GelB + antibiotics" coatings. Based on the results obtained, we consider "GelB + vancomycin" sealant to be the most promising.
Collapse
Affiliation(s)
- Irina Yu. Zhuravleva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Aldar A. Shadanov
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Maria A. Surovtseva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center «Institute of Cytology and Genetics SB RAS», 2 Timakova St., Novosibirsk 630060, Russia
| | - Andrey A. Vaver
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Larisa M. Samoylova
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Sergey V. Vladimirov
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Tatiana P. Timchenko
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
| | - Irina I. Kim
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center «Institute of Cytology and Genetics SB RAS», 2 Timakova St., Novosibirsk 630060, Russia
| | - Olga V. Poveshchenko
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (A.A.S.); (M.A.S.); (A.A.V.); (L.M.S.); (S.V.V.); (T.P.T.); (I.I.K.); (O.V.P.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Federal Research Center «Institute of Cytology and Genetics SB RAS», 2 Timakova St., Novosibirsk 630060, Russia
| |
Collapse
|