1
|
Alkazemi H, Chai J, Allardyce BJ, Lokmic-Tomkins Z, O'Connor AJ, Heath DE. Glycerol-plasticized silk fibroin vascular grafts mimic key mechanical properties of native blood vessels. J Biomed Mater Res A 2025; 113:e37802. [PMID: 39311545 DOI: 10.1002/jbm.a.37802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 12/26/2024]
Abstract
Cardiovascular diseases are a major global health challenge. Blood vessel disease and dysfunction are major contributors to this healthcare burden, and the development of tissue-engineered vascular grafts (TEVGs) is required, particularly for the replacement of small-diameter vessels. Silk fibroin (SF) is a widely used biomaterial for TEVG fabrication due to its high strength and biocompatibility. However, the stiffness of SF is much higher than that of native blood vessels (NBVs), which limits its application for vascular tissue engineering. In this study, SF was plasticized with glycerol to produce TEVGs exhibiting similar stiffness and ultimate tensile strength to those of NBVs. The electrospun SF/glycerol TEVGs exhibited mechanical properties comparable to NBVs and supported the in vitro proliferation of essential vascular cells-endothelial and smooth muscle cells. After 5 days of culture, the TEVGs exhibited an endothelial monolayer in the lumen, demonstrating their potential for functional vascular tissue regeneration. Our study demonstrates the feasibility of producing TEVGs from SF with tailored mechanical properties, paving the way for more functional and durable TEVGs for future clinical applications.
Collapse
Affiliation(s)
- Hazem Alkazemi
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jaydon Chai
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Benjamin J Allardyce
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
| | - Zerina Lokmic-Tomkins
- Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
- Aikenhead Centre for Medical Discovery (ACMD), Fitzroy, Victoria, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Daneshvar A, Farokhi M, Bonakdar S, Vossoughi M. Synthesis and characterization of injectable thermosensitive hydrogel based on Pluronic-grafted silk fibroin copolymer containing hydroxyapatite nanoparticles as potential for bone tissue engineering. Int J Biol Macromol 2024; 277:134412. [PMID: 39097043 DOI: 10.1016/j.ijbiomac.2024.134412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Injectable hydrogels are promising for bone tissue engineering due to their minimally invasive application and adaptability to irregular defects. This study presents the development of pluronic grafted silk fibroin (PF-127-g-SF), a temperature-sensitive graft copolymer synthesized from SF and modified PF-127 via a carbodiimide coupling reaction. The PF-127-g-SF copolymer exhibited a higher sol-gel transition temperature (34 °C at 16 % w/v) compared to PF-127 (23 °C), making it suitable for injectable applications. It also showed improved flexibility and strength, with a yielding point increase from <10 % to nearly 30 %. Unlike PF-127 gel, which degrades within 72 h in aqueous media, the PF-127-g-SF copolymer maintained a stable gel structure for over two weeks due to its robust crosslinked hydrogel network. Incorporating hydroxyapatite nanoparticles (n-HA) into the hydrogel reduced pore size and decreased swelling and degradation rates, extending structural stability to four weeks. Increasing n-HA concentration from 0 % to 20 % reduced porosity from 80 % to 66 %. Rheological studies indicated that n-HA enhanced the scaffold's strength and mechanical properties without altering gelation temperature. Cellular studies with MG-63 cells showed that n-HA concentration influenced cell viability and mineralization, highlighting the scaffold's potential in bone tissue engineering.
Collapse
Affiliation(s)
- Anahita Daneshvar
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Manouchehr Vossoughi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
3
|
Lee S, Son M, Lee J, Byun I, Kim JW, Kim J, Seonwoo H. Computational Fluid Dynamics Analysis and Empirical Evaluation of Carboxymethylcellulose/Alginate 3D Bioprinting Inks for Screw-Based Microextrusion. Polymers (Basel) 2024; 16:1137. [PMID: 38675055 PMCID: PMC11054610 DOI: 10.3390/polym16081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional microextrusion bioprinting technology uses pneumatics, pistons, or screws to transfer and extrude bioinks containing biomaterials and cells to print biological tissues and organs. Computational fluid dynamics (CFD) analysis can simulate the flow characteristics of bioinks in a control volume, and the effect on cell viability can be predicted by calculating the physical quantities. In this study, we developed an analysis system to predict the effect of a screw-based dispenser system (SDS) on cell viability in bioinks through rheological and CFD analyses. Furthermore, carboxymethylcellulose/alginate-based bioinks were used for the empirical evaluation of high-viscous bioinks. The viscosity of bioinks was determined by rheological measurement, and the viscosity coefficient for the CFD analysis was derived from a correlation equation by non-linear regression analysis. The mass flow rate derived from the analysis was successfully validated by comparison with that from the empirical evaluation. Finally, the cell viability was confirmed after bioprinting with bioinks containing C2C12 cells, suggesting that the developed SDS may be suitable for application in the field of bioengineering. Consequently, the developed bioink analysis system is applicable to a wide range of systems and materials, contributing to time and cost savings in the bioengineering industry.
Collapse
Affiliation(s)
- Sungmin Lee
- Department of Human Harmonized Robotics, College of Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Minjae Son
- Department of Aerospace Engineering, Graduate School, College of Engineering, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Juo Lee
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Animal Science & Technology, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Iksong Byun
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Agricultural Machinery Engineering, College of Life Sciences and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jin-Woo Kim
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Materials Science & Engineering Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jungsil Kim
- Department of Smart Bio-Industrial Mechanical Engineering, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hoon Seonwoo
- Interdisciplinary Program in IT-Bio Convergence System, Sunchon National University, Suncheon 57922, Republic of Korea
- Department of Convergent Biosystems Engineering, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
4
|
Nashchekina Y, Militsina A, Elokhovskiy V, Ivan’kova E, Nashchekin A, Kamalov A, Yudin V. Precisely Printable Silk Fibroin/Carboxymethyl Cellulose/Alginate Bioink for 3D Printing. Polymers (Basel) 2024; 16:1027. [PMID: 38674947 PMCID: PMC11054624 DOI: 10.3390/polym16081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional (3D) bioprinting opens up many possibilities for tissue engineering, thanks to its ability to create a three-dimensional environment for cells like an extracellular matrix. However, the use of natural polymers such as silk fibroin in 3D bioprinting faces obstacles such as having a limited printability due to the low viscosity of such solutions. This study addresses these gaps by developing highly viscous, stable, and biocompatible silk fibroin-based inks. The addition of 2% carboxymethyl cellulose sodium and 1% sodium alginate to an aqueous solution containing 2.5 to 5% silk fibroin significantly improves the printability, stability, and mechanical properties of the printed scaffolds. It has been demonstrated that the more silk fibroin there is in bioinks, the higher their printability. To stabilize silk fibroin scaffolds in an aqueous environment, the printed structures must be treated with methanol or ethanol, ensuring the transition from the silk fibroin's amorphous phase to beta sheets. The developed bioinks that are based on silk fibroin, alginate, and carboxymethyl cellulose demonstrate an ease of printing and a high printing quality, and have a sufficiently good biocompatibility with respect to mesenchymal stromal cells. The printed scaffolds have satisfactory mechanical characteristics. The resulting 3D-printing bioink composition can be used to create tissue-like structures.
Collapse
Affiliation(s)
- Yuliya Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Center of Cell Technologies, St. Petersburg 194064, Russia
| | - Anastasia Militsina
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia;
| | - Vladimir Elokhovskiy
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
| | - Elena Ivan’kova
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
- S.M. Kirov Military Medical Academy, Scientific Research Center, St. Petersburg 194044, Russia
| | - Alexey Nashchekin
- Ioffe Institute, Laboratory «Characterization of Materials and Structures of Solid State Electronics», St. Petersburg 194021, Russia;
| | - Almaz Kamalov
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
| | - Vladimir Yudin
- Institute of Macromolecular Compounds of Russian Academy of Sciences, St. Petersburg 199004, Russia; (V.E.); (E.I.); (A.K.)
| |
Collapse
|
5
|
Shaikhutdinov R, Mun G, Kopishev E, Bakirov A, Kabdushev S, Baipakbaeva S, Suleimenov I. Effect of the Formation of Hydrophilic and Hydrophobic-Hydrophilic Associates on the Behavior of Copolymers of N-Vinylpyrrolidone with Methyl Acrylate in Aqueous Solutions. Polymers (Basel) 2024; 16:584. [PMID: 38475269 DOI: 10.3390/polym16050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
It has been shown that there exist conditions under which thermosensitive copolymers of N-vinylpyrrolidone with methyl acrylate form hydrophobic-hydrophilic associations, which are unstable dynamic meshes, the bonds in which are continuously broken and created again, and the nature of the formation of such meshes depends significantly on the proportion of the hydrophobic component in the copolymer. It is shown that the interaction of the above copolymers with polyacrylic acid results in the formation of not only classical interpolymer complexes, but also hydrophilic interpolymer associates, which also represent unstable networks existing in a dynamic mode. In such meshes, the molecules of the above copolymers serve as a kind of cross-agent connecting the polyacid molecules. There are also conditions under which such meshes acquire a complex structure, since unstable bonds between macromolecular tangles of both the same and different types take part in their formation. It is shown that the transition from the formation of interpolymer complexes to the formation of hydrophilic interpolymer associates can occur, among other things, due to changes in the acidity or concentration of low-molecular salt in solution.
Collapse
Affiliation(s)
- Ramazan Shaikhutdinov
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
- Department of Chemistry & Technology of Organic Materials, Polymers and Natural Compounds, Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Grigoriy Mun
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
- Department of Chemistry & Technology of Organic Materials, Polymers and Natural Compounds, Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Eldar Kopishev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
- Department of General and Inorganic Chemistry, Faculty of Natural Sciences, Bukhara State University, Bukhara 705018, Uzbekistan
| | - Akhat Bakirov
- Department of Telecommunication Engineering, Institute of Communications and Space Engineering, Gumarbek Daukeev Almaty University of Power Engineering and Communications, Almaty 050040, Kazakhstan
| | - Sherniyaz Kabdushev
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
| | - Saltanat Baipakbaeva
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
| | - Ibragim Suleimenov
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan
| |
Collapse
|