1
|
He J, Deng D, Yuan Y, Li W, Lin Q, Deng J, Zhong F, Wang L. Integrated degradation of bacteria, organic pollutants, total phosphorus, and antibiotics in food wastewater through immobilization of Bacillus velezensis on polyethylene glycol-polyvinyl alcohol/sodium alginate/nano-TiO 2 microspheres. Int J Biol Macromol 2025; 303:140750. [PMID: 39919400 DOI: 10.1016/j.ijbiomac.2025.140750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 02/09/2025]
Abstract
Food wastewater is characterized by complex composition and a wide range of pollutants. Existing treatment methods are often inefficient for single pollutants and new, environmentally friendly, and integrated treatment methods are needed. This study aimed to construct a novel polyethylene glycol (PEG)-polyvinyl alcohol (PVA)/sodium alginate (SA)/nano-TiO2 hydrogel microsphere-immobilized Bacillus velezensis system for the integrated degradation of complex pollutant components in food wastewater. SEM, FT-IR, XRD, mechanical, rheological, and swelling properties of the microspheres were tested, which confirmed the presence of nano-TiO2 in the microspheres and effectively improved the physical properties of the microspheres. The results showed that the microspheres containing 0.5 g/L nano-TiO2 in the preformed gel solution 1 had the best morphology, mechanical strength, physical stability, and 57.5 % bacterial carrying capacity. The microspheres inhibited Escherichia coli and Staphylococcus aureus and did not affect the growth and reproduction of Bacillus velezensis. The system achieved integrated degradation of chemical oxygen demand (COD), total phosphorus (TP), and antibiotics in food wastewater with degradation rates of 71.85 %, 36.84 %, and 40.52 %, respectively, and remained highly efficient after five times reuse. This method is environmentally friendly, efficient, and economical, which provides a new idea for wastewater treatment by immobilized microbial technology.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dan Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Yi Yuan
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China.
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - FeiFei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - Li Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Gong X, Sawut A, Simayi R, Wang Z, Feng Y. Preparation of modified humic acid/TiO 2/P(AA- co-AM) nanocomposite hydrogels with enhanced dye adsorption and photocatalysis. SOFT MATTER 2024; 20:2937-2954. [PMID: 38466149 DOI: 10.1039/d3sm01749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A novel composite hydrogel with exceptional adsorption and photocatalytic properties was synthesized using modified coal-based humic acid (HA-C), modified titanium dioxide (TiO2) nanoparticles, acrylic acid (AA), and acrylamide (AM) as precursors. The modification of HA-C and TiO2 significantly enhances the structural support provided by the hydrogel for photocatalytic components. Moreover, we investigated the effects of monomer ratio, dye concentration, temperature, and pH on the material properties. Additionally, we tested the mechanical strength, swelling behavior, and reusability of the hydrogels. The composite hydrogel's adsorption performance and synergistic adsorption-photocatalytic performance were evaluated based on its removal rate for both absorbed and degraded methylene blue (MB). Remarkably, incorporating HA-C greatly improved the adsorption efficiency of the composite hydrogel for methylene blue to a maximum capacity of 1490 mg g-1. Furthermore, TiO2 nanoparticles in the structure promoted MB degradation with an efficiency exceeding 96.5%. The hydrogel exhibited excellent recoverability and reusability through nine cycles of adsorption/desorption as well as six cycles of degradation.
Collapse
Affiliation(s)
- Xuankun Gong
- State Key Laboratory of Chemistry and Utilizationof Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Amatjan Sawut
- State Key Laboratory of Chemistry and Utilizationof Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Rena Simayi
- State Key Laboratory of Chemistry and Utilizationof Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Ziyue Wang
- State Key Laboratory of Chemistry and Utilizationof Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Yurou Feng
- State Key Laboratory of Chemistry and Utilizationof Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| |
Collapse
|