1
|
Karaduman AB, Çetin K. Molecularly Imprinted Cryogels for the Selective Adsorption of Salicylic Acid. Appl Biochem Biotechnol 2023; 195:1877-1887. [PMID: 36399302 DOI: 10.1007/s12010-022-04254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
In this study, molecularly imprinted cryogels were fabricated for selective adsorption of salicylic acid. Cryogelation was performed at - 20 °C using a cationic monomer N,N-dimethylaminoethyl methacrylate as a functional monomer for salicylic acid. The morphology, swelling behaviors, and chemical structures of the cryogels were investigated. The general structure and porosities of cryogels were compared with the traditional hydrogels using field emission scanning electron microscopy (FE-SEM). The adsorption performance of cryogels toward salicylic acid was studied to investigate the optimal adsorption conditions. Adsorption capacity of the imprinted cryogels was 1.95 and 7.51 times higher than those of non-imprinted and bare PHEMA cryogels, respectively, due to the specific binding sites toward salicylic acid. Molecularly imprinted cryogels exhibited significant stability and reusability by keeping more than 85% of their adsorption capacity after ten regeneration cycles. Considering the fabrication process, adsorption capacity, selectivity, and reusability of the imprinted cryogels, these new materials could be utilized as a promising alternative for selective adsorption of drug molecules.
Collapse
Affiliation(s)
| | - Kemal Çetin
- Department of Biomedical Engineering, Necmettin Erbakan University, Konya, 42090, Turkey. .,Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya, 42090, Turkey.
| |
Collapse
|
2
|
Bonchev A, Simeonov M, Shestakova P, Vasileva R, Titorenkova R, Apostolov A, Dyulgerova E, Vassileva E. Bioinspired Remineralization of Artificial Caries Lesions Using PDMAEMA/Carbomer/Calcium Phosphates Hybrid Microgels. Gels 2022; 8:gels8100681. [PMID: 36286182 PMCID: PMC9601719 DOI: 10.3390/gels8100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Dental caries remains one of the most prevalent bacterium-caused chronic diseases affecting both adults and children worldwide. The development of new materials for enhancing its remineralization is one of the most promising approaches in the field of advanced dental materials as well as one of the main challenges in non-invasive dentistry. The aim of the present study is to develop novel hybrid materials based on (PDMAEMA)/Carbomer 940 microgels with in situ deposited calcium phosphates (CaP) and to reveal their potential as a remineralization system for artificial caries lesions. To this purpose, novel PDMAEMA/Carbomer 940 microgels were obtained and their core–shell structure was revealed by transmission electron microscopy (TEM). They were successfully used as a matrix for in situ calcium phosphate deposition, thus giving rise to novel hybrid microgels. The calcium phosphate phases formed during the deposition process were studied by X-ray diffraction and infrared spectroscopy, however, due to their highly amorphous nature, the nuclear magnetic resonance (NMR) was the method that was able to provide reliable information about the formed inorganic phases. The novel hybrid microgels were used for remineralization of artificial caries lesions in order to prove their ability to initiate their remineralization. The remineralization process was followed by scanning electron microscopy (SEM), X-ray diffraction, infrared and Raman spectroscopies and all these methods confirmed the successful enamel rod remineralization upon the novel hybrid microgel application. Thus, the study confirmed that novel hybrid microgels, which could ensure a constant supply of calcium and phosphate ions, are a viable solution for early caries treatment.
Collapse
Affiliation(s)
- Alexander Bonchev
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria
| | - Marin Simeonov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria
| | - Radosveta Vasileva
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria
| | - Rositsa Titorenkova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria
| | - Anton Apostolov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Elena Dyulgerova
- Faculty of Dental Medicine, Medical University, 1, G. Sofiiski Str., 1431 Sofia, Bulgaria
| | - Elena Vassileva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
3
|
CIFTBUDAK S, KALKAN B, BOZBAY R, Mertcan ER, ORAKDOGEN N. Structure-property relationships of Kaolin-nanocomposite beads decorated with tertiary amines: Influence of shape on network elasticity and multi-responsivity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Bozbay R, Orakdogen N. Temperature-regulated elasticity and multifunctionality in n-alkyl methacrylate ester-based ternary gels: optimizing adsorption and pH/temperature dual sensitivity. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04963-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Johnson AP, Sabu C, Nivitha K, Sankar R, Shirin VA, Henna T, Raphey V, Gangadharappa H, Kotta S, Pramod K. Bioinspired and biomimetic micro- and nanostructures in biomedicine. J Control Release 2022; 343:724-754. [DOI: 10.1016/j.jconrel.2022.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
6
|
Bozbay R, Orakdogen N. Multifunctional poly(methacrylate ester)s-based terpolymer cryogels with basic amino groups: Correlation of elasticity and structural properties with composition. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Bozbay R, Orakdogen N. Scaling Behavior and Structure–Property Relationships of Multifunctional Ternary‐Hydrogels Based on N‐Alkyl Methacrylate Esters: Property Tunability through Versatile Synthesis. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rabia Bozbay
- Department of Chemistry, Soft Materials Research Laboratory Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Nermin Orakdogen
- Department of Chemistry, Soft Materials Research Laboratory Istanbul Technical University Maslak Istanbul 34469 Turkey
| |
Collapse
|
8
|
Sepiolite-embedded binary nanocomposites of (alkyl)methacrylate-based responsive polymers: Role of silanol groups of fibrillar nanoclay on functional and thermomechanical properties. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Okten Besli NS, Orakdogen N. Charge-balanced terpolymer poly(diethylaminoethyl methacrylate-hydroxyethyl methacrylate-2-acrylamido-2-methyl-propanesulfonic acid) hydrogels and cryogels: scaling parameters and correlation with composition. SOFT MATTER 2020; 16:10470-10487. [PMID: 33063815 DOI: 10.1039/d0sm01306d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The scaling laws relating the preparation conditions to the swelling degree, reduced modulus and effective crosslinking density of poly(diethylaminoethyl methacrylate-co-hydroxyethyl methacrylate-co-2-acrylamido-2-methyl-propanesulfonic acid), henceforth designated as PDHA, gels prepared by radical crosslinking copolymerization in a solvent mixture were reported. Charge-balanced terpolymer PDHA hydrogels and cryogels (PDHA-Hgs and Cgs) were prepared in different monomer feed compositions. The swelling dependence of the reduced modulus was described by a power law relationship Gr≈ (φV)m with an exponent of m = -0.30 at low swelling degree, while in the high swelling region the scaling becomes 0.21, indicating the finite extensibility of the network chains. The scaling exponent for the swelling degree and terpolymer composition, φV≈ (Nν)m, was found to be -0.13, indicating the increasing extent of the topological constraints arising from the trapped entanglements. By combining elasticity and swelling results, the scaling relationship between the apparent crosslink density and HEMA content used in the terpolymer feed was obtained as a cubic polynomial of the mol% of HEMA. In the HEMA-rich terpolymer PDHA Hgs and Cgs, the swelling degree was possibly controlled by the HEMA part of the terpolymer network, while the presence of DEAEM units in the network triggered the thermoresponsive swelling behavior. The dependence of interaction parameter χ on the volume fraction of the crosslinked terpolymer network in the swollen gel ν2 was evaluated and the results revealed extremely strong concentration dependence of χ for all terpolymer samples. Because of their inherent properties, the resulting terpolymer gels might contribute to the improvement of the loading capacity of polymers used in anticancer drug delivery systems.
Collapse
Affiliation(s)
- Nur Sena Okten Besli
- Istanbul Technical University, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey.
| | | |
Collapse
|
10
|
Kumar K, Mogha NK, Yadav R, Venkatesu P. Insulin-induced conformational transition of fluorescent copolymers: a perspective of self-assembly between protein and micellar solutions of smart copolymers. Phys Chem Chem Phys 2020; 22:9573-9586. [PMID: 32322851 DOI: 10.1039/d0cp00645a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthesizing and understanding phase transition behavior of novel block copolymers is very crucial for fabricating next generation of smart materials with foreseeable applications. In this regard, we synthesized three random (r) copolymers of poly(N-vinyl-caprolactam) (PVCL) and poly(2-dimethyl amino ethyl methacrylate) (PDMAEMA) with varying percentages of each block and characterized them using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) patterns, time-resolved fluorescence spectroscopy, and atomic force microscopy (AFM). Synthesized copolymers i.e. PVCL30-PDMAEMA70, PVCL50-PDMAEMA50 and PVCL70-PDMAEMA30 have fluorescence properties, which were confirmed by time-resolved fluorescence spectra and emission spectra, and emission bands were observed at ∼310, ∼435 and ∼424 nm, respectively. The fluorescence lifetime for PVCL50-PDMAEMA50 is larger than those of the other two copolymers suggesting a slow decay of the excited state. The copolymers have spherical geometry as micelles, which were confirmed by TEM. We observed patterned arrangement of micelles and the arranged micelles appear to be pentagon in shape, creating space in between the arranged micelles; however, for PVCL50-PDMAEMA50, the arranged micelles do not form any particular shape. The thermal phase transition of PVCL-r-PDMAEMA in aqueous solution was studied by differential scanning calorimetry and thermal fluorescence spectroscopy. In order to design a biomimetic polymer for bio-specific applications and to understand novel concepts towards polymer-protein interactions, we studied the effect of insulin on lower critical solution temperature (LCST) of PVCL-r-PDMAEMA using multiple sophisticated techniques. The LCST is finely tuned by incorporation of two blocks with various block compositions and the value falls within the range of human body temperature, making PVCL50-PDMAEMA50 a highly compatible material for bio-medical and bio-material applications. Insulin forms a self-assembly with the monomers of PVCL-r-PDMAEMA, which leads to enhancing the micellar aggregates and the eventual decrease in the LCST of the diblock copolymer aqueous solution. The present study provides new insights into insulin-copolymer interactions and can be used for self-assembling nanocarriers and designing protein resistance surfaces.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | | | | | | |
Collapse
|
11
|
Flemming P, Müller M, Fery A, Münch AS, Uhlmann P. Mechanistic Investigation of the Counterion-Induced UCST Behavior of Poly(N,N-dimethylaminoethyl methacrylate) Polymer Brushes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patricia Flemming
- Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Martin Müller
- Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Alexander S. Münch
- Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V, Hohe Straße 6, 01069 Dresden, Germany
- University of Nebraska-Lincoln, 68588 Lincoln, Nebraska, United States
| |
Collapse
|
12
|
Hixon KR, Lu T, Sell SA. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 2017; 62:29-41. [PMID: 28851666 DOI: 10.1016/j.actbio.2017.08.033] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023]
Abstract
The extracellular matrix is fundamental in providing an appropriate environment for cell interaction and signaling to occur. Replicating such a matrix is advantageous in the support of tissue ingrowth and regeneration through the field of tissue engineering. While scaffolds can be fabricated in many ways, cryogels have recently become a popular approach due to their macroporous structure and durability. Produced through the crosslinking of gel precursors followed by a subsequent controlled freeze/thaw cycle, the resulting cryogel provides a unique, sponge-like structure. Therefore, cryogels have proven advantageous for many tissue engineering applications including roles in bioreactor systems, cell separation, and scaffolding. Specifically, the matrix has been demonstrated to encourage the production of various molecules, such as antibodies, and has also been used for cryopreservation. Cryogels can pose as a bioreactor for the expansion of cell lines, as well as a vehicle for cell separation. Lastly, this matrix has shown excellent potential as a tissue engineered scaffold, encouraging regrowth at numerous damaged tissue sites in vivo. This review will briefly discuss the fabrication of cryogels, with an emphasis placed on their application in various facets of tissue engineering to provide an overview of this unique scaffold's past and future roles. STATEMENT OF SIGNIFICANCE Cryogels are unique scaffolds produced through the controlled freezing and thawing of a polymer solution. There is an ever-growing body of literature that demonstrates their applicability in the realm of tissue engineering as extracellular matrix analogue scaffolds; with extensive information having been provided regarding the fabrication, porosity, and mechanical integrity of the scaffolds. Additionally, cryogels have been reviewed with respect to their role in bioseparation and as cellular incubators. This all-inclusive view of the roles that cryogels can play is critical to advancing the technology and expanding its niche within biomaterials and tissue engineering research. To the best of the authors' knowledge, this is the first comprehensive review of cryogel applications in tissue engineering that includes specific looks at their growing roles as extracellular matrix analogues, incubators, and in bioseparation processes.
Collapse
|