1
|
Eissenberger K, Ballesteros A, De Bisschop R, Bugnicourt E, Cinelli P, Defoin M, Demeyer E, Fürtauer S, Gioia C, Gómez L, Hornberger R, Ißbrücker C, Mennella M, von Pogrell H, Rodriguez-Turienzo L, Romano A, Rosato A, Saile N, Schulz C, Schwede K, Sisti L, Spinelli D, Sturm M, Uyttendaele W, Verstichel S, Schmid M. Approaches in Sustainable, Biobased Multilayer Packaging Solutions. Polymers (Basel) 2023; 15:1184. [PMID: 36904425 PMCID: PMC10007551 DOI: 10.3390/polym15051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
The depletion of fossil resources and the growing demand for plastic waste reduction has put industries and academic researchers under pressure to develop increasingly sustainable packaging solutions that are both functional and circularly designed. In this review, we provide an overview of the fundamentals and recent advances in biobased packaging materials, including new materials and techniques for their modification as well as their end-of-life scenarios. We also discuss the composition and modification of biobased films and multilayer structures, with particular attention to readily available drop-in solutions, as well as coating techniques. Moreover, we discuss end-of-life factors, including sorting systems, detection methods, composting options, and recycling and upcycling possibilities. Finally, regulatory aspects are pointed out for each application scenario and end-of-life option. Moreover, we discuss the human factor in terms of consumer perception and acceptance of upcycling.
Collapse
Affiliation(s)
- Kristina Eissenberger
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Arantxa Ballesteros
- Centro Tecnológico ITENE, Parque Tecnológico, Carrer d’Albert Einstein 1, 46980 Paterna, Spain
| | - Robbe De Bisschop
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | - Elodie Bugnicourt
- Graphic Packaging International, Fountain Plaza, Belgicastraat 7, 1930 Zaventem, Belgium
| | - Patrizia Cinelli
- Planet Bioplastics S.r.l., Via San Giovanni Bosco 23, 56127 Pisa, Italy
| | - Marc Defoin
- Bostik SA, 420 rue d’Estienne d’Orves, 92700 Colombes, France
| | - Elke Demeyer
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | - Siegfried Fürtauer
- Fraunhofer Institute for Process Engineering and Packaging, Materials Development, Giggenhauser Str. 35, 85354 Freising, Germany
| | - Claudio Gioia
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Lola Gómez
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, Carrer de Gustave Eiffel 4, 46980 Paterna, Spain
| | - Ramona Hornberger
- Fraunhofer Institute for Process Engineering and Packaging, Materials Development, Giggenhauser Str. 35, 85354 Freising, Germany
| | | | - Mara Mennella
- KNEIA S.L., Carrer d’Aribau 168-170, 08036 Barcelona, Spain
| | - Hasso von Pogrell
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, Carrer de Gustave Eiffel 4, 46980 Paterna, Spain
| | | | - Angela Romano
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Antonella Rosato
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadja Saile
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Christian Schulz
- European Bioplastics e.V. (EUBP), Marienstr. 19/20, 10117 Berlin, Germany
| | - Katrin Schwede
- European Bioplastics e.V. (EUBP), Marienstr. 19/20, 10117 Berlin, Germany
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Daniele Spinelli
- Next Technology Tecnotessile, Chemical Division, Via del Gelso 13, 59100 Prato, Italy
| | - Max Sturm
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Willem Uyttendaele
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | | | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| |
Collapse
|
2
|
Aukema KG, Wang M, de Souza B, O'Keane S, Clipsham M, Wackett LP, Aksan A. Core-shell encapsulation formulations to stabilize desiccated Bradyrhizobium against high environmental temperature and humidity. Microb Biotechnol 2022; 15:2391-2400. [PMID: 35730421 PMCID: PMC9437883 DOI: 10.1111/1751-7915.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Engineered materials to improve the shelf-life of desiccated microbial strains are needed for cost-effective bioaugmentation strategies. High temperatures and humidity of legume-growing regions challenge long-term cell stabilization at the desiccated state. A thermostable xeroprotectant core and hydrophobic water vapour barrier shell encapsulation technique was developed to protect desiccated cells from the environment. A trehalose core matrix increased the stability of desiccated Bradyrhizobium by three orders of magnitude over 20 days at 32°C and 50% relative humidity (RH) compared to buffer alone; however, the improvement was not deemed sufficient for a shelf-stable bioproduct. We tested common additives (skim milk, albumin, gelatin and dextran) to increase the glass transition temperature of the desiccated product to provide further stabilization. Albumin increased the glass transition temperature of the trehalose-based core by 40°C and stabilized desiccated Bradyrhizobium for 4 months during storage at high temperature (32°C) and moderate humidity (50% RH) with only 1 log loss of viability. Although the albumin-trehalose core provided exceptional protection against high temperature, it was ineffective at higher humidity conditions (75%). We therefore incorporated a paraffin shell, which protected desiccated cells against 75% RH providing proof of concept that core and shell encapsulation is an effective strategy to stabilize desiccated cells.
Collapse
Affiliation(s)
- Kelly G. Aukema
- Department of BiochemistryMolecular Biology and BiophysicsMinneapolisMNUSA
- BioTechnology Institute University of MinnesotaSt. PaulMNUSA
| | - Mian Wang
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Beatriz de Souza
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Sophie O'Keane
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMNUSA
| | - Maia Clipsham
- Microbial EngineeringUniversity of MinnesotaSt. PaulMNUSA
| | - Lawrence P. Wackett
- Department of BiochemistryMolecular Biology and BiophysicsMinneapolisMNUSA
- BioTechnology Institute University of MinnesotaSt. PaulMNUSA
| | - Alptekin Aksan
- BioTechnology Institute University of MinnesotaSt. PaulMNUSA
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
3
|
Effect of PVOH/PLA + Wax Coatings on Physical and Functional Properties of Biodegradable Food Packaging Films. Polymers (Basel) 2022; 14:polym14050935. [PMID: 35267757 PMCID: PMC8912708 DOI: 10.3390/polym14050935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
Biodegradable polymers suffer from inherent performance limitations that severely limit their practical application. Their functionalization by coating technology is a promising strategy to significantly improve their physical properties for food packaging. In this study, we investigated the double coating technique to produce multifunctional, high barrier and heat-sealable biodegradable films. The systems consisted of a web layer, made of poly(lactide) (PLA) and poly(butylene-adipate-co-terephthalate) (PBAT), which was first coated with a poly(vinyl) alcohol based layer, providing high barrier, and then with a second layer of PLA + ethylene-bis-stereamide (EBS) wax (from 0 to 20%), to provide sealability and improve moisture resistance. The films were fully characterized in terms of chemical, thermal, morphological, surface and functional properties. The deposition of the PVOH coating alone, with a thickness of 5 μm, led to a decrease in the oxygen transmission rate from 2200 cm3/m2 d bar, for the neat substrate (thickness of 22 μm), to 8.14 cm3/m2 d bar (thickness of 27 μm). The deposition of the second PLA layer did not affect the barrier properties but provided heat sealability, with a maximum bonding strength equal to 6.53 N/25 mm. The EBS wax incorporation into the PLA slightly increased the surface hydrophobicity, since the water contact angle passed from 65.4°, for the neat polylactide layer, to 71° for the 20% wax concentration. With respect to the substrate, the double-coated films exhibited increased stiffness, with an elastic modulus ca. three times higher, and a reduced elongation at break, which, however still remained above 75%. Overall, the developed double-coated films exhibited performances comparable to those of the most common synthetic polymer films used in the packaging industry, underlining their suitability for the packaging of sensitive foods with high O2-barrier requirements.
Collapse
|
4
|
Tyagi P, Salem KS, Hubbe MA, Pal L. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Zhang K, Yu Q, Zhu L, Liu S, Chi Z, Chen X, Zhang Y, Xu J. The Preparations and Water Vapor Barrier Properties of Polyimide Films Containing Amide Moieties. Polymers (Basel) 2017; 9:E677. [PMID: 30965976 PMCID: PMC6418874 DOI: 10.3390/polym9120677] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 11/30/2022] Open
Abstract
Flexible displays are a systematic revolution in the field of display, in which high-performance and high-barrier polymer substrates are considered to be one of the most important key materials. In this work, high water vapor barrier polyimides containing amide moieties were synthesized via the ternary polymerization of 4,4'-diaminobenzailide (DABA), 4,4'-diaminodipheny ether (ODA), and 3,3',4,4'-biphenyl-tetracarboxylic acid dianhydride (BPDA) followed by thermal imidization. The relationship between the content of amide moieties and the water vapor barrier property of the prepared polyimides was studied by means of density test, water absorbing test, water contact angle test, water vapor permeation test, fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), thermogravimetry coupled with fourier transform infrared spectrometry (TG-FTIR), wide-angle X-ray diffraction analysis (WXRD), mechanical performance test, etc. The results show that the introduction of amide groups into polyimide (PI) main chains can improve the water vapor barrier properties of the polyimides effectively. The water vapor transmission rate (WVTR) of the polyimide films can be improved from 8.2365 g·(m²·24 h)-1 to 0.8670 g·(m²·24 h)-1 with the increasing content of amide moieties.
Collapse
Affiliation(s)
- Kai Zhang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qiaoxi Yu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Longji Zhu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xudong Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yi Zhang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jiarui Xu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
6
|
Haas A, Schlemmer D, Grupa U, Schmid M. Effect of Chemical Grafting Parameters on the Manufacture of Functionalized PVOH Films Having Controlled Water Solubility. Front Chem 2017; 5:38. [PMID: 28674687 PMCID: PMC5475390 DOI: 10.3389/fchem.2017.00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
This study investigated the chemical grafting of a single-layer poly(vinyl alcohol) (PVOH) film. The effect of the grafting parameters (grafting time, grafting temperature, and concentration of fatty acid chloride) on the hydrophobicity of the film surface and the film solubility were evaluated. The PVOH substrate film (cold-water soluble at 20°C) was manufactured by flat extrusion and had a thickness of 50 μm (±5 μm). The chemical grafting was performed using the transfer method with palmitoyl chloride (C16). The solubility, surface energy, and water vapor transmission rate of the grafted films were measured. The process parameters which produced the most hydrophobic PVOH film were found to be a fatty acid concentration of 3%, a grafting time of 14 min, and a grafting temperature of 130°C. These studies involved systematic adjustment of the hydrophobicity of one side of PVOH films. The results open up opportunities for packing fluids in water soluble packaging.
Collapse
Affiliation(s)
- Andreas Haas
- Materials Development, Fraunhofer Institute for Process Engineering and Packaging IVVFreising, Germany.,Department of Food Technology, Hochschule FuldaFulda, Germany
| | - Daniel Schlemmer
- Materials Development, Fraunhofer Institute for Process Engineering and Packaging IVVFreising, Germany
| | - Uwe Grupa
- Department of Food Technology, Hochschule FuldaFulda, Germany
| | - Markus Schmid
- Materials Development, Fraunhofer Institute for Process Engineering and Packaging IVVFreising, Germany.,TUM School of Life Sciences Weihenstephan, Technical University of MunichFreising, Germany
| |
Collapse
|
7
|
Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G, Jesdinszki M, Lindner M, Scheuerer Z, Castelló S, Schmid M. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E74. [PMID: 28362331 PMCID: PMC5408166 DOI: 10.3390/nano7040074] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/21/2023]
Abstract
For the last decades, nanocomposites materials have been widely studied in the scientific literature as they provide substantial properties enhancements, even at low nanoparticles content. Their performance depends on a number of parameters but the nanoparticles dispersion and distribution state remains the key challenge in order to obtain the full nanocomposites' potential in terms of, e.g., flame retardance, mechanical, barrier and thermal properties, etc., that would allow extending their use in the industry. While the amount of existing research and indeed review papers regarding the formulation of nanocomposites is already significant, after listing the most common applications, this review focuses more in-depth on the properties and materials of relevance in three target sectors: packaging, solar energy and automotive. In terms of advances in the processing of nanocomposites, this review discusses various enhancement technologies such as the use of ultrasounds for in-process nanoparticles dispersion. In the case of nanocoatings, it describes the different conventionally used processes as well as nanoparticles deposition by electro-hydrodynamic processing. All in all, this review gives the basics both in terms of composition and of processing aspects to reach optimal properties for using nanocomposites in the selected applications. As an outlook, up-to-date nanosafety issues are discussed.
Collapse
Affiliation(s)
- Kerstin Müller
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Elodie Bugnicourt
- IRIS, Parc Mediterrani de la Tecnologia, Avda. Carl Friedrich Gauss 11, 08860 Castelldefels, Barcelona, Spain.
| | - Marcos Latorre
- ITENE Instituto Tecnológico del Embalaje, Transporte y Logística, Albert Einstein, 1, 46980 Paterna, Spain.
| | - Maria Jorda
- ITENE Instituto Tecnológico del Embalaje, Transporte y Logística, Albert Einstein, 1, 46980 Paterna, Spain.
| | - Yolanda Echegoyen Sanz
- Institute of Agrochemistry and Food Technology (IATA)-CSIC, Avda. Agustín Escardino, 7, 46980 Paterna, Spain.
- Science Education Department, Facultat de Magisteri, Universitat de València, 46022 València, Spain.
| | - José M Lagaron
- Institute of Agrochemistry and Food Technology (IATA)-CSIC, Avda. Agustín Escardino, 7, 46980 Paterna, Spain.
| | - Oliver Miesbauer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Alvise Bianchin
- MBN Nanomaterialia, via Bortolan 42, 31040 Vascon di Carbonera, Italy.
| | - Steve Hankin
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh, EH14 4AP, UK.
| | - Uwe Bölz
- HPX Polymers GmbH, Ziegeleistraße 1, 82327 Tutzing, Germany.
| | - Germán Pérez
- Eurecat, Av. Universitat Autònoma 23, 08290 Cerdanyola del Vallès, Barcelona, Spain.
| | - Marius Jesdinszki
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Martina Lindner
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Zuzana Scheuerer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
| | - Sara Castelló
- Bioinicia, Calle Algepser, 65-Nave 3 | Polígono Industrial Táctica | 46980 Paterna (Valencia), Spain.
| | - Markus Schmid
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354 Freising, Germany.
- Chair for Food Packaging Technology, Technische Universität München, Weihenstephaner Steig 22, 85354 Freising, Germany.
| |
Collapse
|
8
|
Bugnicourt E, Kehoe T, Latorre M, Serrano C, Philippe S, Schmid M. Recent Prospects in the Inline Monitoring of Nanocomposites and Nanocoatings by Optical Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E150. [PMID: 28335278 PMCID: PMC5224628 DOI: 10.3390/nano6080150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 11/16/2022]
Abstract
Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites' potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties), protective effects against flame propagation, ultra violet (UV) radiation or gas permeation, is highly dependent on the nanocoating's thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use.
Collapse
Affiliation(s)
- Elodie Bugnicourt
- Innovació i Recerca Industrial i Sostenible (IRIS), Parc Mediterrani de la Tecnologia, Avda. Carl Friedrich Gauss 11, Castelldefels, Barcelona 08860, Spain.
| | - Timothy Kehoe
- IRIS Advanced Engineering, NexusUCD, University College Dublin, Blocks 9 &10 Belfield Office Park Belfield, Dublin D04 V2N9, Ireland.
| | - Marcos Latorre
- Instituto Tecnológico del Embalaje, Transporte Y Logística, Parque Tecnológico, C/Albert Einstein, 1, Paterna, Valencia 46980, Spain.
| | - Cristina Serrano
- Innovació i Recerca Industrial i Sostenible (IRIS), Parc Mediterrani de la Tecnologia, Avda. Carl Friedrich Gauss 11, Castelldefels, Barcelona 08860, Spain.
| | - Séverine Philippe
- IRIS Advanced Engineering, NexusUCD, University College Dublin, Blocks 9 &10 Belfield Office Park Belfield, Dublin D04 V2N9, Ireland.
| | - Markus Schmid
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, Freising 85354, Germany.
- Chair of Food Packaging Technology, Technische Universität München, Weihenstephaner Steig 22, Freising 85354, Germany.
| |
Collapse
|
9
|
Jin B, Shen J, Gou X, Peng R, Chu S, Dong H. Synthesis, Characterization, Thermal Stability and Sensitivity Properties of New Energetic Polymers-PVTNP- g-GAPs Crosslinked Polymers. Polymers (Basel) 2016; 8:polym8010010. [PMID: 30979113 PMCID: PMC6432591 DOI: 10.3390/polym8010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/30/2015] [Accepted: 01/02/2016] [Indexed: 12/27/2022] Open
Abstract
A series of energetic polymers, poly(vinyl 2,4,6-trinitrophenylacetal)-g-polyglycidylazides (PVTNP-g-GAPs), were synthesized via cross-linking reactions of PVTNP with three different molecular weight GAPs using toluene diisocyanate as the cross-linking agent. The structures of these energetic polymers were characterized by ultraviolet visible spectra (UV–Vis), attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR-FTIR), and nuclear magnetic resonance spectrometry (NMR). The glass-transition temperatures of these energetic polymers were measured with differential scanning calorimetry (DSC) method, and the results showed that all the measured energetic polymers have two distinct glass-transition temperatures. The thermal decomposition behaviors of these energetic polymers were evaluated by differential thermal analysis (DTA), thermogravimetric analysis (TGA) and thermogravimetric analysis tandem infrared spectrum (TGA-IR). The results indicated that all the measured energetic polymers have excellent resistance to thermal decomposition up to 200 °C, and the initial thermal decomposition was attributed to the breakdown of azide group. Moreover, the sensitivity properties of these energetic polymers were measured with the national military standard methods and their compatibilities with the main energetic components of 2,4,6-trinitrotoluene (TNT)-based melt-cast explosive were evaluated by using the DTA method. The results indicate that these energetic polymers have feasible mechanical sensitivities and can be safely used with TNT, cyclotetramethylene tetranitramine (HMX), 1,1-diamino-2,2-dinitroethene (FOX-7), 3-nitro-1,2,4-triazol-5-one (NTO) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB).
Collapse
Affiliation(s)
- Bo Jin
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, China.
- Department of Chemistry, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Juan Shen
- Department of Chemistry, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xiaoshuang Gou
- Department of Chemistry, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Rufang Peng
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Shijin Chu
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Haishan Dong
- Institute of Chemical Materials, Chinese Academy of Engineering Physics, Mianyang 621900, China.
| |
Collapse
|
10
|
Dias VM, Kuznetsova A, Tedim J, Yaremchenko AA, Zheludkevich ML, Portugal I, Evtuguin DV. Silica-Based Nanocoating Doped by Layered Double Hydroxides to Enhance the Paperboard Barrier Properties. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/wjnse.2015.54015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|