1
|
Herberg A, Kuckling D. Branching analysis of β-cyclodextrin-based poly( N-isopropylacrylamide) star polymers using triple detection SEC. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Artjom Herberg
- Department of Chemistry, Paderborn University, Paderborn, Germany
| | - Dirk Kuckling
- Department of Chemistry, Paderborn University, Paderborn, Germany
| |
Collapse
|
2
|
Liu R, Rong Z, Han G, Yang X, Zhang W. Synthesis and self-assembly of star multiple block copolymer of poly(4-vinylpyridine)-block-polystyrene. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Abstract
Chemical pollution of water has raised great concerns among citizens, lawmakers, and nearly all manufacturing industries. As the legislation addressing liquid effluents becomes more stringent, water companies are increasingly scrutinized for their environmental performance. In this context, emergent contaminants represent a major challenge, and the remediation of water bodies and wastewater demands alternative sorbent materials. One of the most promising adsorbing materials for micropolluted water environments involves cyclodextrin (CD) polymers and cyclodextrin-containing polysaccharides. Although cyclodextrins are water-soluble and, thus, unusable as adsorbents in aqueous media, they can be feasibly polymerized by using different crosslinkers such as epichlorohydrin, polycarboxylic acids, and glutaraldehyde. Likewise, with those coupling agents or after substituting hydroxyl groups with more reactive moieties, cyclodextrin units can be covalently attached to a pre-existing polysaccharide. In this direction, the functionalization of chitosan, cellulose, carboxymethyl cellulose, and other carbohydrate polymers with CDs is vastly found in the literature. For the system containing CDs to be used for remediation purposes, there are benefits from a synergy that arises from (i) the ability of CD units to interact selectively with a broad spectrum of molecules, forming inclusion complexes and higher-order supramolecular assemblies, (ii) the functional groups of the crosslinker comonomers, (iii) the three-dimensional structure of the crosslinked network, and/or (iv) the intrinsic characteristics of the polysaccharide backbone. In view of the most recent contributions regarding CD-based copolymers and CD-containing polysaccharides, this review discusses their performance as adsorbents in micropolluted water environments, as well as their interaction patterns, addressing the influence of their structural and physicochemical properties and their functionalization.
Collapse
|
4
|
|
5
|
Przybyla MA, Yilmaz G, Becer CR. Natural cyclodextrins and their derivatives for polymer synthesis. Polym Chem 2020. [DOI: 10.1039/d0py01464h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A toolbox of cyclodextrin derivatives, synthetic strategies for the preparation of cyclodextrin-polymer conjugates using various polymerisation techniques and representative applications of such conjugates are discussed.
Collapse
Affiliation(s)
| | - Gokhan Yilmaz
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|
6
|
Abstract
Highly efficient synthesis of multifunctional initiators based on cyclodextrin (CD) cores was achieved by a thiol–ene photoclick strategy. They were successfully employed in a “core-first” approach to prepare multiarm star polymers via ATRP.
Collapse
Affiliation(s)
- Yi Yi
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| |
Collapse
|
7
|
Li R, Li X, Zhang Y, Delawder AO, Colley ND, Whiting EA, Barnes JC. Diblock brush-arm star copolymers via a core-first/graft-from approach using γ-cyclodextrin and ROMP: a modular platform for drug delivery. Polym Chem 2020. [DOI: 10.1039/c9py01146c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water-soluble diblock brush-arm star copolymers using γ-CD-based core-first ring-opening metathesis polymerization, allowing for anticancer drug delivery via host–guest interaction.
Collapse
Affiliation(s)
- Ruihan Li
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Xuesong Li
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Yipei Zhang
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | | | - Nathan D. Colley
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Emma A. Whiting
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Jonathan C. Barnes
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| |
Collapse
|
8
|
End Group Stability of Atom Transfer Radical Polymerization (ATRP)-Synthesized Poly( N-isopropylacrylamide): Perspectives for Diblock Copolymer Synthesis. Polymers (Basel) 2019; 11:polym11040678. [PMID: 31013945 PMCID: PMC6523552 DOI: 10.3390/polym11040678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
Studies on the end group stability of poly(N-isopropylacrylamide) during the atom transfer radical polymerization (ATRP) process are presented. Polymerization of N-isopropylacrylamide was conducted in different solvents using a copper(I) chloride/Me6Tren catalyst complex. The influence of the ATRP solvent as well as the polymer purification process on the end group stability was investigated. For the first time, mass spectrometry results clearly underline the loss of ω end groups via an intramolecular cyclization reaction. Furthermore, an ATRP system based on a copper(I) bromide/Me6Tren catalyst complex was introduced, that showed not only good control over the polymerization process, but also provided the opportunity of block copolymerization of N-isopropylacrylamide with acrylates and other N-substituted acrylamides. The polymers were characterized using 1H-NMR spectroscopy and size exclusion chromatography. Polymer end groups were determined via ESI-TOF mass spectrometry enhanced by ion mobility separation (IMS).
Collapse
|
9
|
Vrijsen JH, Osiro Medeiros C, Gruber J, Junkers T. Continuous flow synthesis of core cross-linked star polymers via photo-induced copper mediated polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00134d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A convenient method to synthesize core cross-linked star polymers via a continuous flow photopolymerization process is developed.
Collapse
Affiliation(s)
- Jeroen H. Vrijsen
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
| | - Camila Osiro Medeiros
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
- Departamento de Engenharia Química
| | - Jonas Gruber
- Departamento de Química Fundamental
- Instituto de Químca da Universidade de São Paulo
- CEP 05508-000 São Paulo
- Brazil
| | - Tanja Junkers
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
- Polymer Reaction Design Group
| |
Collapse
|
10
|
Aydın M, Aydın EB, Sezgintürk MK. A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum. Biosens Bioelectron 2018; 107:1-9. [PMID: 29425857 DOI: 10.1016/j.bios.2018.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/05/2018] [Accepted: 02/04/2018] [Indexed: 11/26/2022]
|
11
|
Tasci E, Aydin M, Gorur M, Gürek AG, Yilmaz F. Pyrene-functional star polymers as fluorescent probes for nitrophenolic compounds. J Appl Polym Sci 2018. [DOI: 10.1002/app.46310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Enis Tasci
- Department of Chemistry; Gebze Technical University; Kocaeli 41400 Turkey
- Central Research Laboratory Application and Research Center; Giresun University; Giresun 28200 Turkey
| | - Muhammet Aydin
- Central Research Laboratory; Namık Kemal University; Tekirdag 59030 Turkey
| | - Mesut Gorur
- Department of Chemistry; Istanbul Medeniyet University; Istanbul 34700 Turkey
| | - Ayşe Gül Gürek
- Department of Chemistry; Gebze Technical University; Kocaeli 41400 Turkey
| | | |
Collapse
|
12
|
Hao L, Yegin C, Talari JV, Oh JK, Zhang M, Sari MM, Zhang L, Min Y, Akbulut M, Jiang B. Thermo-responsive gels based on supramolecular assembly of an amidoamine and citric acid. SOFT MATTER 2018; 14:432-439. [PMID: 29261211 DOI: 10.1039/c7sm01592e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we report the formation of a novel, aqueous-based thermo-responsive, supramolecular gelling system prepared by a convenient and efficient self-assembly of a long-chain amino-amide and citric acid. To determine the viscosity behavior and to gain insights into the gelation mechanism, a complementary combination of techniques, including Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic light scattering (DLS), and sinusoidal oscillatory tests, were used. The supramolecular gelator exhibited remarkably reversible sol-gel transitions induced by temperature at 76 °C. At a concentration of 5 wt%, the zero-frequency viscosity of the supramolecular system increased by about four orders of magnitude (from 4.2 to 12 563 Pa s) by changing the temperature from 23 °C to 76 °C. The viscous nature of the supramolecular gel could be preserved up to 90 °C. The synergistic combination of the hydrogen bonding between amino and carboxylic acid groups and the electrostatic interactions arising from the protonation of the amino-group and the deprotonation of carboxylic acid groups enhanced at higher temperatures is presumably responsible for the thermo-responsive behavior. We anticipate that these supramolecular gelators can be beneficial in various applications such as hydrogel scaffolds for regenerative medicine, personal care products and cosmetics, and enhanced oil recovery as viscosity modifiers.
Collapse
Affiliation(s)
- Li Hao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ibuprofen-loaded micelles based on star-shaped erythritol-core PLLA-PEG copolymer: effect of molecular weights of PEG. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4141-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Hou Y, Liu Y, Sun S, Liang J. Dual pH-Sensitive DOX-Conjugated Cyclodextrin-Core Star Nano-Copolymer Prodrugs. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yu Hou
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province; Department of Applied Chemistry; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry; Ministry of Education; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Yuyang Liu
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province; Department of Applied Chemistry; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry; Ministry of Education; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Shuangshuang Sun
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province; Department of Applied Chemistry; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry; Ministry of Education; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Jianghu Liang
- Key Laboratory of Macromolecular Science and Technology of Shaanxi Province; Department of Applied Chemistry; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry; Ministry of Education; School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| |
Collapse
|
15
|
Liu Z, Xia Z, Fan L, Xiao H, Cao C. An ionic coordination hybrid hydrogel for bioseparation. Chem Commun (Camb) 2017; 53:5842-5845. [DOI: 10.1039/c7cc01923h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An ionic coordination hybrid hydrogel is formed with ionic and covalent crosslinked networks via one-step copolymation.
Collapse
Affiliation(s)
- Zhen Liu
- Laboratory of Bioseparation and Analytical Biochemistry
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Zhijun Xia
- Laboratory of Bioseparation and Analytical Biochemistry
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Liuyin Fan
- Laboratory of Bioseparation and Analytical Biochemistry
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Hua Xiao
- Laboratory of Bioseparation and Analytical Biochemistry
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Chengxi Cao
- Laboratory of Bioseparation and Analytical Biochemistry
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
16
|
Yin J, Chen Y, Zhang ZH, Han X. Stimuli-Responsive Block Copolymer-Based Assemblies for Cargo Delivery and Theranostic Applications. Polymers (Basel) 2016; 8:E268. [PMID: 30974545 PMCID: PMC6432437 DOI: 10.3390/polym8070268] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 02/03/2023] Open
Abstract
Although a number of tactics towards the fabrication and biomedical exploration of stimuli-responsive polymeric assemblies being responsive and adaptive to various factors have appeared, the controlled preparation of assemblies with well-defined physicochemical properties and tailor-made functions are still challenges. These responsive polymeric assemblies, which are triggered by stimuli, always exhibited reversible or irreversible changes in chemical structures and physical properties. However, simple drug/polymer nanocomplexes cannot deliver or release drugs into the diseased sites and cells on-demand due to the inevitable biological barriers. Hence, utilizing therapeutic or imaging agents-loaded stimuli-responsive block copolymer assemblies that are responsive to tumor internal microenvironments (pH, redox, enzyme, and temperature, etc.) or external stimuli (light and electromagnetic field, etc.) have emerged to be an important solution to improve therapeutic efficacy and imaging sensitivity through rationally designing as well as self-assembling approaches. In this review, we summarize a portion of recent progress in tumor and intracellular microenvironment responsive block copolymer assemblies and their applications in anticancer drug delivery and triggered release and enhanced imaging sensitivity. The outlook on future developments is also discussed. We hope that this review can stimulate more revolutionary ideas and novel concepts and meet the significant interest to diverse readers.
Collapse
Affiliation(s)
- Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| | - Yu Chen
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| | - Zhi-Huang Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| | - Xin Han
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| |
Collapse
|
17
|
Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG. Star Polymers. Chem Rev 2016; 116:6743-836. [PMID: 27299693 DOI: 10.1021/acs.chemrev.6b00008] [Citation(s) in RCA: 544] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.
Collapse
Affiliation(s)
- Jing M Ren
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Thomas G McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Edgar H H Wong
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 2000444, People's Republic of China
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
18
|
Huang W, Yang J, Xia Y, Wang X, Xue X, Yang H, Wang G, Jiang B, Li F, Komarneni S. Light and Temperature as Dual Stimuli Lead to Self-Assembly of Hyperbranched Azobenzene-Terminated Poly(N-isopropylacrylamide). Polymers (Basel) 2016; 8:E183. [PMID: 30979277 PMCID: PMC6432090 DOI: 10.3390/polym8050183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022] Open
Abstract
Hyperbranched poly(N-isopropylacrylamide)s (HBPNIPAMs) end-capped with different azobenzene chromophores (HBPNIPAM-Azo-OC₃H₇, HBPNIPAM-Azo-OCH₃, HBPNIPAM-Azo, and HBPNIPAM-Azo-COOH) were successfully synthesized by atom transfer radical polymerization (ATRP) of N-isopropylacrylamide using different azobenzene-functional initiators. All HBPNIPAMs showed a similar highly branched structure, similar content of azobenzene chromophores, and similar absolute weight/average molecular weight. The different azobenzene structures at the end of the HBPNIPAMs exhibited reversible trans-cis-trans isomerization behavior under alternating UV and Vis irradiation, which lowered the critical solution temperature (LCST) due to different self-assembling behaviors. The spherical aggregates of HBPNIPAM-Azo-OC₃H₇ and HBPNIPAM-Azo-OCH₃ containing hydrophobic para substituents either changed to bigger nanorods or increased in number, leading to a change in LCST of -2.0 and -1.0 °C, respectively, after UV irradiation. However, the unimolecular aggregates of HBPNIPAM-Azo were unchanged, while the unstable multimolecular particles of HBPNIPAM-Azo-COOH end-capped with strongly polar carboxyl groups partly dissociated to form a greater number of unimolecular aggregates and led to an LCST increase of 1.0 °C.
Collapse
Affiliation(s)
- Wenyan Huang
- Jiangsu Key Laboratory of Material Surface Science and Technology, School of Material Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Jing Yang
- Jiangsu Key Laboratory of Material Surface Science and Technology, School of Material Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Yunqing Xia
- Jiangsu Key Laboratory of Material Surface Science and Technology, School of Material Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Xuezi Wang
- Jiangsu Key Laboratory of Material Surface Science and Technology, School of Material Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Material Surface Science and Technology, School of Material Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
- Materials Research Laboratory, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Hongjun Yang
- Jiangsu Key Laboratory of Material Surface Science and Technology, School of Material Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Guifang Wang
- Materials Research Laboratory, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
- School of Resource and Metallurgy, Guangxi University, Nanning 530004, Guangxi, China.
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Material Surface Science and Technology, School of Material Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Fang Li
- Jiangsu Key Laboratory of Material Surface Science and Technology, School of Material Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Sridhar Komarneni
- Materials Research Laboratory, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|