1
|
Farooq S, Xu L, Ostovan A, Qin C, Liu Y, Pan Y, Ping J, Ying Y. Assessing the greenification potential of cyclodextrin-based molecularly imprinted polymers for pesticides detection. Food Chem 2023; 429:136822. [PMID: 37450994 DOI: 10.1016/j.foodchem.2023.136822] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Cyclodextrins, with their unparalleled attributes of eco-friendliness, natural abundance, versatile utility, and facile functionalization, make a paramount contribution to the field of molecular imprinting. Leveraging the unique properties of cyclodextrins in molecularly imprinted polymers synthesis has revolutionized the performance of molecularly imprinted polymers, resulting in enhanced adsorption selectivity, capacity, and rapid extraction of pesticides, while also circumventing conventional limitations. As the concern for food quality and safety continues to grow, the need for standard analytical methods to detect pesticides in food and environmental samples has become paramount. Cyclodextrins, being non-toxic and biodegradable, present an attractive option for greener reagents in imprinting polymers that can also ensure environmental safety post-application. This review provides a comprehensive summary of the significance of cyclodextrins in molecular imprinting for pesticide detection in food and environmental samples. The recent advancements in the synthesis and application of molecularly imprinted polymers using cyclodextrins have been critically analyzed. Furthermore, the current limitations have been meticulously examined, and potential opportunities for greenification with cyclodextrin applications in this field have been discussed. By harnessing the advantages of cyclodextrins in molecular imprinting, it is possible to develop highly selective and efficient methods for detecting pesticides in food and environmental samples while also addressing the challenges of sustainability and environmental impact.
Collapse
Affiliation(s)
- Saqib Farooq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lizhou Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chunlian Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yingjia Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yuxiang Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
2
|
Zhao X, Wang Y, Zhang P, Lu Z, Xiao Y. Recent Advances of Molecularly Imprinted Polymers Based on Cyclodextrin. Macromol Rapid Commun 2021; 42:e2100004. [PMID: 33749077 DOI: 10.1002/marc.202100004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Molecular imprinting polymers (MIPs), generally considered as artificial mimics that are comparable to natural receptor, are polymers with tailor-made specific recognition sites complementary to the template molecules in shape and size. As a class of supramolecular compounds, cyclodextrins (CDs) are flourishing in the field of molecular imprinting with their unique structural properties. This review presents recent advances in application of MIPs based on CDs during the past five years. The discussion is grouped according to the different role of CDs in MIPs, that is, functional monomer, carrier modifier, etc. Main focus is the application of CD-based MIP on sample preparation, detection, and sensing. Additionally, drug delivery with CD-based MIP is also briefly discussed. Finally, challenges and future prospects of application of CDs in MIP are elaborated.
Collapse
Affiliation(s)
- Xiaoyue Zhao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Pan Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhemiao Lu
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yin Xiao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Wang Y, Ma J, Ye X, Wong W, Li C, Wu K. Enhanced effects of ionic liquid and gold nanoballs on the photoelectrochemical sensing performance of WS2 nanosheets towards 2,4,6-tribromophenol. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Liu JM, Wei SY, Liu HL, Fang GZ, Wang S. Preparation and Evaluation of Core⁻Shell Magnetic Molecularly Imprinted Polymers for Solid-Phase Extraction and Determination of Sterigmatocystin in Food. Polymers (Basel) 2017; 9:E546. [PMID: 30965842 PMCID: PMC6418914 DOI: 10.3390/polym9100546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
Magnetic molecularly imprinted polymers (MMIPs), combination of outstanding magnetism with specific selective binding capability for target molecules, have proven to be attractive in separation science and bio-applications. Herein, we proposed the core⁻shell magnetic molecularly imprinted polymers for food analysis, employing the Fe₃O₄ particles prepared by co-precipitation protocol as the magnetic core and MMIP film onto the silica layer as the recognition and adsorption of target analytes. The obtained MMIPs materials have been fully characterized by scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), vibrating sample magnetometer (VSM), and re-binding experiments. Under the optimal conditions, the fabricated Fe₃O₄@MIPs demonstrated fast adsorption equilibrium, a highly improved imprinting capacity, and excellent specificity to target sterigmatocystin (ST), which have been successfully applied as highly efficient solid-phase extraction materials followed by high-performance liquid chromatography (HPLC) analysis. The MMIP-based solid phase extraction (SPE) method gave linear response in the range of 0.05⁻5.0 mg·L-1 with a detection limit of 9.1 µg·L-1. Finally, the proposed method was used for the selective isolation and enrichment of ST in food samples with recoveries in the range 80.6⁻88.7% and the relative standard deviation (RSD) <5.6%.
Collapse
Affiliation(s)
- Jing-Min Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shu-Yuan Wei
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hui-Lin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Guo-Zhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Liang W, Hu H, Guo P, Ma Y, Li P, Zheng W, Zhang M. Combining Pickering Emulsion Polymerization with Molecular Imprinting to Prepare Polymer Microspheres for Selective Solid-Phase Extraction of Malachite Green. Polymers (Basel) 2017; 9:E344. [PMID: 30971022 PMCID: PMC6418669 DOI: 10.3390/polym9080344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/01/2022] Open
Abstract
Malachite green (MG) is currently posing a carcinogenic threat to the safety of human lives; therefore, it is highly desirable to develop an effective method for fast trace detection of MG. Herein, for the first time, this paper presents a systematic study on polymer microspheres, being prepared by combined Pickering emulsion polymerization and molecular imprinting, to detect and purify MG. The microspheres, molecularly imprinted with MG, show enhanced adsorption selectivity to MG, despite a somewhat lowered adsorption capacity, as compared to the counterpart without molecular imprinting. Structural features and adsorption performance of these microspheres are elucidated by different characterizations and kinetic and thermodynamic analyses. The surface of the molecularly imprinted polymer microspheres (M-PMs) exhibits regular pores of uniform pore size distribution, endowing M-PMs with impressive adsorption selectivity to MG. In contrast, the microspheres without molecular imprinting show a larger average particle diameter and an uneven porous surface (with roughness and a large pore size), causing a lower adsorption selectivity to MG despite a higher adsorption capacity. Various adsorption conditions are investigated, such as pH and initial concentration of the solution with MG, for optimizing the adsorption performance of M-PMs in selectively tackling MG. The adsorption kinetics and thermodynamics are deeply discussed and analyzed, so as to provide a full picture of the adsorption behaviors of the polymer microspheres with and without the molecular imprinting. Significantly, M-PMs show promising solid-phase extraction column applications for recovering MG in a continuous extraction manner.
Collapse
Affiliation(s)
- Weixin Liang
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, China National Analytical Center (Guangzhou), Guangzhou 510070, China.
| | - Huawen Hu
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Pengran Guo
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, China National Analytical Center (Guangzhou), Guangzhou 510070, China.
| | - Yanfang Ma
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, China National Analytical Center (Guangzhou), Guangzhou 510070, China.
| | - Peiying Li
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Wenrou Zheng
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Min Zhang
- College of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
6
|
Liu JM, Cao FZ, Fang GZ, Wang S. Upconversion Nanophosphor-Involved Molecularly Imprinted Fluorescent Polymers for Sensitive and Specific Recognition of Sterigmatocystin. Polymers (Basel) 2017; 9:E299. [PMID: 30970977 PMCID: PMC6432482 DOI: 10.3390/polym9070299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 01/22/2023] Open
Abstract
Originated from the bottom-up synthetic strategy, molecularly imprinted polymers (MIPs) possess the inherent ability of selective and specific recognition and binding of the target analytes, with their structural cavities that can match the target molecules in respect to size, shape, and functional groups. Herein, based on the high selectivity of MIPs and the fluorescence properties of the β-NaYF₄:Yb3+, Er3+ upconversion nanoparticles, MIPs with both specificity and fluorescent signals are fabricated to recognize trace sterigmatocystin (ST) with high selectivity and sensitivity. The structure analogue of ST, 1,8-dihydroxyanthraquinone (DT), was employed as the template molecule, acrylamide as the functional monomer, 3-methacryloyloxypropyltrimethoxysilane as the crosslinking agent, and a new molecular imprinting technique of non-aqueous sol-gel method is used to synthesize a molecularly imprinted material with high selectivity to ST. Under optimal conditions, the fluorescence enhancement of fluorescent MIPs increased as the concentration of ST increased. In the range of 0.05⁻1.0 mg L-1, fluorescence enhancement and the concentration showed a good linear relationship with a detection limit of 0.013 mg L-1. Real sample analysis achieved the recoveries of 83.8⁻88.8% (RSD 5.1%) for rice, 82.1⁻87.5% (RSD 4.6%) for maize, and 80.6⁻89.2% (RSD 3.0%) for soybeans, respectively, revealing the feasibility of the developed method.
Collapse
Affiliation(s)
- Jing-Min Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Feng-Zhen Cao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guo-Zhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|