1
|
Yang Z, Liu X, Cribbin EM, Kim AM, Li JJ, Yong KT. Liver-on-a-chip: Considerations, advances, and beyond. BIOMICROFLUIDICS 2022; 16:061502. [PMID: 36389273 PMCID: PMC9646254 DOI: 10.1063/5.0106855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 05/14/2023]
Abstract
The liver is the largest internal organ in the human body with largest mass of glandular tissue. Modeling the liver has been challenging due to its variety of major functions, including processing nutrients and vitamins, detoxification, and regulating body metabolism. The intrinsic shortfalls of conventional two-dimensional (2D) cell culture methods for studying pharmacokinetics in parenchymal cells (hepatocytes) have contributed to suboptimal outcomes in clinical trials and drug development. This prompts the development of highly automated, biomimetic liver-on-a-chip (LOC) devices to simulate native liver structure and function, with the aid of recent progress in microfluidics. LOC offers a cost-effective and accurate model for pharmacokinetics, pharmacodynamics, and toxicity studies. This review provides a critical update on recent developments in designing LOCs and fabrication strategies. We highlight biomimetic design approaches for LOCs, including mimicking liver structure and function, and their diverse applications in areas such as drug screening, toxicity assessment, and real-time biosensing. We capture the newest ideas in the field to advance the field of LOCs and address current challenges.
Collapse
Affiliation(s)
| | | | - Elise M. Cribbin
- School of Biomedical Engineering, University of Technology Sydney, New South Wales 2007, Australia
| | - Alice M. Kim
- School of Biomedical Engineering, University of Technology Sydney, New South Wales 2007, Australia
| | - Jiao Jiao Li
- Authors to whom correspondence should be addressed: and
| | - Ken-Tye Yong
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
2
|
Temple J, Velliou E, Shehata M, Lévy R, Gupta P. Current strategies with implementation of three-dimensional cell culture: the challenge of quantification. Interface Focus 2022; 12:20220019. [PMID: 35992772 PMCID: PMC9372643 DOI: 10.1098/rsfs.2022.0019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
From growing cells in spheroids to arranging them on complex engineered scaffolds, three-dimensional cell culture protocols are rapidly expanding and diversifying. While these systems may often improve the physiological relevance of cell culture models, they come with technical challenges, as many of the analytical methods used to characterize traditional two-dimensional (2D) cells must be modified or replaced to be effective. Here we review the advantages and limitations of quantification methods based either on biochemical measurements or microscopy imaging. We focus on the most basic of parameters that one may want to measure, the number of cells. Precise determination of this number is essential for many analytical techniques where measured quantities are only meaningful when normalized to the number of cells (e.g. cytochrome p450 enzyme activity). Thus, accurate measurement of cell number is often a prerequisite to allowing comparisons across different conditions (culturing conditions or drug and treatment screening) or between cells in different spatial states. We note that this issue is often neglected in the literature with little or no information given regarding how normalization was performed, we highlight the pitfalls and complications of quantification and call for more accurate reporting to improve reproducibility.
Collapse
Affiliation(s)
- Jonathan Temple
- Bioscience building, University of Liverpool, Liverpool L69 3BX, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, University College London, London, UK
| | - Mona Shehata
- Hutchison-MRC Research Centre, University of Cambridge, Cambridge CB2 1TN, UK
| | - Raphaël Lévy
- Bioscience building, University of Liverpool, Liverpool L69 3BX, UK
- Laboratoire for Vascular Translational Science, Université Sorbonne Paris Nord, Bobigny, France
| | - Priyanka Gupta
- Centre for 3D Models of Health and Disease, University College London, London, UK
| |
Collapse
|
3
|
Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials. Drug Deliv Transl Res 2022; 12:2048-2074. [PMID: 35507131 PMCID: PMC9066991 DOI: 10.1007/s13346-022-01147-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Despite the exciting properties and wide-reaching applications of nanobiomaterials (NBMs) in human health and medicine, their translation from bench to bedside is slow, with a predominant issue being liver accumulation and toxicity following systemic administration. In vitro 2D cell-based assays and in vivo testing are the most popular and widely used methods for assessing liver toxicity at pre-clinical stages; however, these fall short in predicting toxicity for NBMs. Focusing on in vitro and in vivo assessment, the accurate prediction of human-specific hepatotoxicity is still a significant challenge to researchers. This review describes the relationship between NBMs and the liver, and the methods for assessing toxicity, focusing on the limitations they bring in the assessment of NBM hepatotoxicity as one of the reasons defining the poor translation for NBMs. We will then present some of the most recent advances towards the development of more biologically relevant in vitro liver methods based on tissue-mimetic 3D cell models and how these could facilitate the translation of NBMs going forward. Finally, we also discuss the low public acceptance and limited uptake of tissue-mimetic 3D models in pre-clinical assessment, despite the demonstrated technical and ethical advantages associated with them.
Collapse
|
4
|
Vilas-Boas V, Vinken M. Hepatotoxicity induced by nanomaterials: mechanisms and in vitro models. Arch Toxicol 2020; 95:27-52. [PMID: 33155068 DOI: 10.1007/s00204-020-02940-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
The unique physicochemical properties of materials at nanoscale have opened a plethora of opportunities for applications in the pharmaceutical and medical field, but also in consumer products from food and cosmetics industries. As a consequence, daily human exposure to nanomaterials through distinct routes is considerable and, therefore, may raise health concerns. Many nanomaterials have been described to accumulate and induce adversity in the liver. Among these, silica and some types of metallic nanoparticles are the most broadly used in consumer products and, therefore, the most studied and reported. The reviewed literature was collected from PubMed.gov during the month of March 2020 using the search words "nanomaterials induced hepatotoxicity", which yielded 181 papers. This present paper reviews the hepatotoxic effects of nanomaterials described in in vitro and in vivo studies, with emphasis on the underlying mechanisms. The induction of oxidative stress and inflammation are the manifestations of toxicity most frequently reported following exposure of cells or animal models to different nanomaterials. Furthermore, the available in vitro models for the evaluation of the hepatotoxic effects of nanomaterials are discussed, highlighting the continuous interest in the development of more advanced and reliable in vitro models for nanotoxicology.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
5
|
Liao Q, Zhou C, Lu Y, Wu X, Chen F, Lou Y. Efficient and Precise Micro-Injection Molding of Micro-Structured Polymer Parts Using Micro-Machined Mold Core by WEDM. Polymers (Basel) 2019; 11:polym11101591. [PMID: 31569465 PMCID: PMC6835737 DOI: 10.3390/polym11101591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
In this paper, micro-structured polymer parts were efficiently and accurately fabricated by micro-injection molding using a micro-structured mold core machined by wire electrical discharge machining (WEDM). The objective was to realize low-cost mass production and manufacturing of micro-structured polymer products. The regular micro-structured mold core was manufactured by precise WEDM. The micro-structured polymer workpieces were rapidly fabricated by micro-injection molding and the effects of the micro-injection molding process parameters on replication rate and surface roughness of micro-structured polymers were systematically investigated and analyzed. It is shown that the micro-structured polymer can be rapidly and precisely fabricated by the proposed method. The experimental results show the minimum size machining error of the micro-structured mold core and the maximum replication rate of micro-formed polymer were 0.394% and 99.12%, respectively. Meanwhile, the optimal micro-injection molding parameters, namely, jet temperature, melt temperature, injection velocity, holding pressure and holding time were 195 °C, 210 °C, 40 mm/min, 7 Mpa and 5 s, respectively. The surface roughness Ra at the groove bottom and top of the micro-structured polymer workpieces achieved minimum values of 0.805 µm and 0.972 µm, respectively.
Collapse
Affiliation(s)
- Qianghua Liao
- School of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, China;
| | - Chaolan Zhou
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (X.W.); (F.C.); (Y.L.)
- Correspondence: (Y.L.); (C.Z.); Tel.: +86-755-86950053
| | - Yanjun Lu
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (X.W.); (F.C.); (Y.L.)
- Correspondence: (Y.L.); (C.Z.); Tel.: +86-755-86950053
| | - Xiaoyu Wu
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (X.W.); (F.C.); (Y.L.)
| | - Fumin Chen
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (X.W.); (F.C.); (Y.L.)
| | - Yan Lou
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (X.W.); (F.C.); (Y.L.)
| |
Collapse
|
6
|
McCormick S, Smith LE, Holmes AM, Tong Z, Lombi E, Voelcker NH, Priest C. Multiparameter toxicity screening on a chip: Effects of UV radiation and titanium dioxide nanoparticles on HaCaT cells. BIOMICROFLUIDICS 2019; 13:044112. [PMID: 31893008 PMCID: PMC6932853 DOI: 10.1063/1.5113729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/06/2019] [Indexed: 05/16/2023]
Abstract
Microfluidic screening is gaining attention as an efficient method for evaluating nanomaterial toxicity. Here, we consider a multiparameter treatment where nanomaterials interact with cells in the presence of a secondary exposure (UV radiation). The microfluidic device contains channels that permit immobilization of HaCaT cells (human skin cell line), delivery of titanium dioxide nanoparticles (TNPs), and exposure to a known dose of UV radiation. The effect of single-parameter exposures (UV or TNP) was first studied as a benchmark, and then multiparameter toxicity (UV and TNP) at different concentrations was explored. The results demonstrate a concentration-dependent protective effect of TNP when exposed to UV irradiation.
Collapse
Affiliation(s)
| | - Louise E. Smith
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia
| | - Amy M. Holmes
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia
| | | | - Craig Priest
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
7
|
Zhu D, Long Q, Xu Y, Xing J. Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems. MICROMACHINES 2019; 10:mi10060414. [PMID: 31234335 PMCID: PMC6631852 DOI: 10.3390/mi10060414] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have found a wide range of applications in clinical therapeutic and diagnostic fields. However, currently most NPs are still in the preclinical evaluation phase with few approved for clinical use. Microfluidic systems can simulate dynamic fluid flows, chemical gradients, partitioning of multi-organs as well as local microenvironment controls, offering an efficient and cost-effective opportunity to fast screen NPs in physiologically relevant conditions. Here, in this review, we are focusing on summarizing key microfluidic platforms promising to mimic in vivo situations and test the performance of fabricated nanoparticles. Firstly, we summarize the key evaluation parameters of NPs which can affect their delivery efficacy, followed by highlighting the importance of microfluidic-based NP evaluation. Next, we will summarize main microfluidic systems effective in evaluating NP haemocompatibility, transport, uptake and toxicity, targeted accumulation and general efficacy respectively, and discuss the future directions for NP evaluation in microfluidic systems. The combination of nanoparticles and microfluidic technologies could greatly facilitate the development of drug delivery strategies and provide novel treatments and diagnostic techniques for clinically challenging diseases.
Collapse
Affiliation(s)
- Derui Zhu
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Qifu Long
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Yuzhen Xu
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Jiangwa Xing
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| |
Collapse
|
8
|
Fabrication of polylactic acid/carbon nanotubes/chitosan composite fibers by electrospinning for strawberry preservation. Int J Biol Macromol 2019; 121:1329-1336. [DOI: 10.1016/j.ijbiomac.2018.09.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 12/19/2022]
|
9
|
He Z, Ranganathan N, Li P. Evaluating nanomedicine with microfluidics. NANOTECHNOLOGY 2018; 29:492001. [PMID: 30215611 DOI: 10.1088/1361-6528/aae18a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomedicines are engineered nanoscale structures that have an extensive range of application in the diagnosis and therapy of many diseases. Despite the rapid progress in and tremendous potential of nanomedicines, their clinical translational process is still slow, owing to the difficulty in understanding, evaluating, and predicting their behavior in complex living organisms. Microfluidic techniques offer a promising way to resolve these challenges. Carefully designed microfluidic chips enable in vivo microenvironment simulation and high-throughput analysis, thus providing robust platforms for nanomedicine evaluation. Here, we summarize the recent developments and achievements in microfluidic methods for nanomedicine evaluation, categorized into four sections based on their target systems: single cell, multicellular system, organ, and organism levels. Finally, we provide our perspectives on the challenges and future directions of microfluidics-based nanomedicine evaluation.
Collapse
Affiliation(s)
- Ziyi He
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| | | | | |
Collapse
|
10
|
Sun J, Yun C, Cui B, Li P, Liu G, Wang X, Chu F. A Facile Approach for Fabricating Microstructured Surface Based on Etched Template by Inkjet Printing Technology. Polymers (Basel) 2018; 10:E1209. [PMID: 30961134 PMCID: PMC6290637 DOI: 10.3390/polym10111209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/04/2022] Open
Abstract
Microstructures are playing an important role in manufacturing functional devices, due to their unique properties, such as wettability or flexibility. Recently, various microstructured surfaces have been fabricated to realize functional applications. To achieve the applications, photolithography or printing technology is utilized to produce the microstructures. However, these methods require preparing templates or masks, which are usually complex and expensive. Herein, a facile approach for fabricating microstructured surfaces was studied based on etched template by inkjet printing technology. Precured polydimethylsiloxane substrate was etched by inkjet printing water-soluble polyacrylic acid solution. Then, the polydimethylsiloxane substrate was cured and rinsed, which could be directly used as template for fabricating microstructured surfaces. Surfaces with raised dots, lines, and squares, were facilely obtained using the etched templates by inkjet printing technology. Furthermore, controllable anisotropic wettability was exhibited on the raised line microstructured surface. This work provides a flexible and scalable way to fabricate various microstructured surfaces. It would bring about excellent performance, which could find numerous applications in optoelectronic devices, biological chips, microreactors, wearable products, and related fields.
Collapse
Affiliation(s)
- Jiazhen Sun
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chenghu Yun
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Bo Cui
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Pingping Li
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guangping Liu
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xin Wang
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fuqiang Chu
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
11
|
Electrospinning and microfluidics. ELECTROFLUIDODYNAMIC TECHNOLOGIES (EFDTS) FOR BIOMATERIALS AND MEDICAL DEVICES 2018. [PMCID: PMC7152487 DOI: 10.1016/b978-0-08-101745-6.00008-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Hosseini S, Azari P, Jiménez-Moreno MF, Rodriguez-Garcia A, Pingguan-Murphy B, Madou MJ, Martínez-Chapa SO. Polymethacrylate Coated Electrospun PHB Fibers as a Functionalized Platform for Bio-Diagnostics: Confirmation Analysis on the Presence of Immobilized IgG Antibodies against Dengue Virus. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2292. [PMID: 28991214 PMCID: PMC5676693 DOI: 10.3390/s17102292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022]
Abstract
In this article, a combination of far field electrospinning (FFES) and free-radical polymerization has been used to create a unique platform for protein immobilization via the physical attachment of biomolecules to the surface of the fiber mats. The large specific surface area of the fibers with its tailored chemistry provides a desirable platform for effective analyte-surface interaction. The detailed analysis of protein immobilization on a newly developed bio-receptive surface plays a vital role to gauge its advantages in bio-diagnostic applications. We relied on scanning electron microscopy (SEM), diameter range analysis, and X-ray photoelectron spectroscopy (XPS), along with thermal gravimetric analysis (TGA), water-in-air contact angle analysis (WCA), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM) to study our developed platforms and to provide valuable information regarding the presence of biomolecular entities on the surface. Detailed analyses of the fiber mats before and after antibody immobilization have shown obvious changes on the surface of the bioreceptive surface including: (i) an additional peak corresponding to the presence of an antibody in TGA analysis; (ii) extra FTIR peaks corresponding to the presence of antibodies on the coated fiber platforms; and (iii) a clear alteration in surface roughness recorded by AFM analysis. Confirmation analyses on protein immobilization are of great importance as they underlay substantial grounds for various biosensing applications.
Collapse
Affiliation(s)
- Samira Hosseini
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico.
| | - Pedram Azari
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Centre for Applied Biomechanics, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Martín F Jiménez-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico.
| | - Aida Rodriguez-Garcia
- Instituto de Biotecnologia, Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza 66455, Nuevo Leon, Mexico.
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Marc J Madou
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA.
| | - Sergio O Martínez-Chapa
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico.
| |
Collapse
|
13
|
Liu Y, Hu K, Wang Y. Primary Hepatocytes Cultured on a Fiber-Embedded PDMS Chip to Study Drug Metabolism. Polymers (Basel) 2017; 9:E215. [PMID: 30970894 PMCID: PMC6431835 DOI: 10.3390/polym9060215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 11/26/2022] Open
Abstract
In vitro drug screening using reliable and predictable liver models remains a challenge. The identification of an ideal biological substrate is essential to maintain hepatocyte functions during in vitro culture. Here, we developed a fiber-embedded polydimethylsiloxane (PDMS) chip to culture hepatocytes. Hepatocyte spheroids formed in this device were subjected to different flow rates, of which a flow rate of 50 μL/min provided the optimal microenvironment for spheroid formation, maintained significantly higher rates of albumin and urea synthesis, yielded higher CYP3A1 (cytochrome P450 3A1) and CYP2C11 (cytochrome P450 2C11) enzyme activities for metabolism, and demonstrated higher expression levels of liver-specific genes. In vitro metabolism tests on tolbutamide and testosterone by hepatocytes indicated predicted clearance rates of 1.98 ± 0.43 and 40.80 ± 10.13 mL/min/kg, respectively, which showed a good in vitro⁻in vivo correspondence. These results indicate that this system provides a strategy for the construction of functional engineered liver tissue that can be used to study drug metabolism.
Collapse
Affiliation(s)
- Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Ke Hu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
14
|
McCormick SC, Kriel FH, Ivask A, Tong Z, Lombi E, Voelcker NH, Priest C. The Use of Microfluidics in Cytotoxicity and Nanotoxicity Experiments. MICROMACHINES 2017. [PMCID: PMC6190054 DOI: 10.3390/mi8040124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Many unique chemical compounds and nanomaterials are being developed, and each one requires a considerable range of in vitro and/or in vivo toxicity screening in order to evaluate their safety. The current methodology of in vitro toxicological screening on cells is based on well-plate assays that require time-consuming manual handling or expensive automation to gather enough meaningful toxicology data. Cost reduction; access to faster, more comprehensive toxicity data; and a robust platform capable of quantitative testing, will be essential in evaluating the safety of new chemicals and nanomaterials, and, at the same time, in securing the confidence of regulators and end-users. Microfluidic chips offer an alternative platform for toxicity screening that has the potential to transform both the rates and efficiency of nanomaterial testing, as reviewed here. The inherent advantages of microfluidic technologies offer high-throughput screening with small volumes of analytes, parallel analyses, and low-cost fabrication.
Collapse
Affiliation(s)
- Scott C. McCormick
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd., Mawson Lakes, 5098 SA, Australia; (S.C.M.); (F.H.K.); (A.I.); (Z.T.); (E.L.); (N.H.V.)
| | - Frederik H. Kriel
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd., Mawson Lakes, 5098 SA, Australia; (S.C.M.); (F.H.K.); (A.I.); (Z.T.); (E.L.); (N.H.V.)
| | - Angela Ivask
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd., Mawson Lakes, 5098 SA, Australia; (S.C.M.); (F.H.K.); (A.I.); (Z.T.); (E.L.); (N.H.V.)
| | - Ziqiu Tong
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd., Mawson Lakes, 5098 SA, Australia; (S.C.M.); (F.H.K.); (A.I.); (Z.T.); (E.L.); (N.H.V.)
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC, Australia
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd., Mawson Lakes, 5098 SA, Australia; (S.C.M.); (F.H.K.); (A.I.); (Z.T.); (E.L.); (N.H.V.)
| | - Nicolas H. Voelcker
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd., Mawson Lakes, 5098 SA, Australia; (S.C.M.); (F.H.K.); (A.I.); (Z.T.); (E.L.); (N.H.V.)
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 VIC, Australia
| | - Craig Priest
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd., Mawson Lakes, 5098 SA, Australia; (S.C.M.); (F.H.K.); (A.I.); (Z.T.); (E.L.); (N.H.V.)
- Correspondence: ; Tel.: +61-8-8302-5146
| |
Collapse
|