1
|
Zhang L, Ma M, Li J, Qiao K, Xie Y, Zheng Y. Stimuli-responsive microcarriers and their application in tissue repair: A review of magnetic and electroactive microcarrier. Bioact Mater 2024; 39:147-162. [PMID: 38808158 PMCID: PMC11130597 DOI: 10.1016/j.bioactmat.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Microcarrier applications have made great advances in tissue engineering in recent years, which can load cells, drugs, and bioactive factors. These microcarriers can be minimally injected into the defect to help reconstruct a good microenvironment for tissue repair. In order to achieve more ideal performance and face more complex tissue damage, an increasing amount of effort has been focused on microcarriers that can actively respond to external stimuli. These microcarriers have the functions of directional movement, targeted enrichment, material release control, and providing signals conducive to tissue repair. Given the high controllability and designability of magnetic and electroactive microcarriers, the research progress of these microcarriers is highlighted in this review. Their structure, function and applications, potential tissue repair mechanisms, and challenges are discussed. In summary, through the design with clinical translation ability, meaningful and comprehensive experimental characterization, and in-depth study and application of tissue repair mechanisms, stimuli-responsive microcarriers have great potential in tissue repair.
Collapse
Affiliation(s)
- LiYang Zhang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengjiao Ma
- Beijing Wanjie Medical Device Co., Ltd, Beijing, China
| | - Junfei Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kun Qiao
- Beijing Gerecov Technology Company Ltd., Beijing, China
| | - Yajie Xie
- Beijing Gerecov Technology Company Ltd., Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
2
|
Klar RM, Cox J, Raja N, Lohfeld S. The 3D-McMap Guidelines: Three-Dimensional Multicomposite Microsphere Adaptive Printing. Biomimetics (Basel) 2024; 9:94. [PMID: 38392141 PMCID: PMC10886723 DOI: 10.3390/biomimetics9020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Microspheres, synthesized from diverse natural or synthetic polymers, are readily utilized in biomedical tissue engineering to improve the healing of various tissues. Their ability to encapsulate growth factors, therapeutics, and natural biomolecules, which can aid tissue regeneration, makes microspheres invaluable for future clinical therapies. While microsphere-supplemented scaffolds have been investigated, a pure microsphere scaffold with an optimized architecture has been challenging to create via 3D printing methods due to issues that prevent consistent deposition of microsphere-based materials and their ability to maintain the shape of the 3D-printed structure. Utilizing the extrusion printing process, we established a methodology that not only allows the creation of large microsphere scaffolds but also multicomposite matrices into which cells, growth factors, and therapeutics encapsulated in microspheres can be directly deposited during the printing process. Our 3D-McMap method provides some critical guidelines for issues with scaffold shape fidelity during and after printing. Carefully timed breaks, minuscule drying steps, and adjustments to extrusion parameters generated an evenly layered large microsphere scaffold that retained its internal architecture. Such scaffolds are superior to other microsphere-containing scaffolds, as they can release biomolecules in a highly controlled spatiotemporal manner. This capability permits us to study cell responses to the delivered signals to develop scaffolds that precisely modulate new tissue formation.
Collapse
Affiliation(s)
- Roland M Klar
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - James Cox
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Naren Raja
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Stefan Lohfeld
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
3
|
Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater 2023; 27:505-545. [PMID: 37180643 PMCID: PMC10173014 DOI: 10.1016/j.bioactmat.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Osteochondral defects are caused by injury to both the articular cartilage and subchondral bone within skeletal joints. They can lead to irreversible joint damage and increase the risk of progression to osteoarthritis. Current treatments for osteochondral injuries are not curative and only target symptoms, highlighting the need for a tissue engineering solution. Scaffold-based approaches can be used to assist osteochondral tissue regeneration, where biomaterials tailored to the properties of cartilage and bone are used to restore the defect and minimise the risk of further joint degeneration. This review captures original research studies published since 2015, on multiphasic scaffolds used to treat osteochondral defects in animal models. These studies used an extensive range of biomaterials for scaffold fabrication, consisting mainly of natural and synthetic polymers. Different methods were used to create multiphasic scaffold designs, including by integrating or fabricating multiple layers, creating gradients, or through the addition of factors such as minerals, growth factors, and cells. The studies used a variety of animals to model osteochondral defects, where rabbits were the most commonly chosen and the vast majority of studies reported small rather than large animal models. The few available clinical studies reporting cell-free scaffolds have shown promising early-stage results in osteochondral repair, but long-term follow-up is necessary to demonstrate consistency in defect restoration. Overall, preclinical studies of multiphasic scaffolds show favourable results in simultaneously regenerating cartilage and bone in animal models of osteochondral defects, suggesting that biomaterials-based tissue engineering strategies may be a promising solution.
Collapse
Affiliation(s)
- Rouyan Chen
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Electrical and Mechanical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, SA, 5005, Australia
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Christopher B. Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW, 2065, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
4
|
Peng Y, Zhuang Y, Liu Y, Le H, Li D, Zhang M, Liu K, Zhang Y, Zuo J, Ding J. Bioinspired gradient scaffolds for osteochondral tissue engineering. EXPLORATION (BEIJING, CHINA) 2023; 3:20210043. [PMID: 37933242 PMCID: PMC10624381 DOI: 10.1002/exp.20210043] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/05/2023] [Indexed: 11/08/2023]
Abstract
Repairing articular osteochondral defects present considerable challenges in self-repair due to the complex tissue structure and low proliferation of chondrocytes. Conventional clinical therapies have not shown significant efficacy, including microfracture, autologous/allograft osteochondral transplantation, and cell-based techniques. Therefore, tissue engineering has been widely explored in repairing osteochondral defects by leveraging the natural regenerative potential of biomaterials to control cell functions. However, osteochondral tissue is a gradient structure with a smooth transition from the cartilage to subchondral bone, involving changes in chondrocyte morphologies and phenotypes, extracellular matrix components, collagen type and orientation, and cytokines. Bioinspired scaffolds have been developed by simulating gradient characteristics in heterogeneous tissues, such as the pores, components, and osteochondrogenesis-inducing factors, to satisfy the anisotropic features of osteochondral matrices. Bioinspired gradient scaffolds repair osteochondral defects by altering the microenvironments of cell growth to induce osteochondrogenesis and promote the formation of osteochondral interfaces compared with homogeneous scaffolds. This review outlines the meaningful strategies for repairing osteochondral defects by tissue engineering based on gradient scaffolds and predicts the pros and cons of prospective translation into clinical practice.
Collapse
Affiliation(s)
- Yachen Peng
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
- Institute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Hanxiang Le
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Di Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Mingran Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Kai Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| | - Yanbo Zhang
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
| | - Jianlin Zuo
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunP. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiP. R. China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
| |
Collapse
|
5
|
Poly(lactic acid) and Nanocrystalline Cellulose Methacrylated Particles for Preparation of Cryogelated and 3D-Printed Scaffolds for Tissue Engineering. Polymers (Basel) 2023; 15:polym15030651. [PMID: 36771954 PMCID: PMC9920993 DOI: 10.3390/polym15030651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Different parts of bones possess different properties, such as the capacity for remodeling cell content, porosity, and protein composition. For various traumatic or surgical tissue defects, the application of tissue-engineered constructs seems to be a promising strategy. Despite significant research efforts, such constructs are still rarely available in the clinic. One of the reasons is the lack of resorbable materials, whose properties can be adjusted according to the intended tissue or tissue contacts. Here, we present our first results on the development of a toolbox, by which the scaffolds with easily tunable mechanical and biological properties could be prepared. Biodegradable poly(lactic acid) and nanocrystalline cellulose methacrylated particles were obtained, characterized, and used for preparation of three-dimensional scaffolds via cryogelation and 3D printing approaches. The composition of particles-based ink for 3D printing was optimized in order to allow formation of stable materials. Both the modified-particle cytotoxicity and the matrix-supported cell adhesion were evaluated and visualized in order to confirm the perspectives of materials application.
Collapse
|
6
|
Muthusamy S, Mahendiran B, Nithiya P, Selvakumar R, Krishnakumar GS. Functionalization of biologically inspired scaffold through selenium and gallium ion doping to promote bone regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Fu JN, Wang X, Yang M, Chen YR, Zhang JY, Deng RH, Zhang ZN, Yu JK, Yuan FZ. Scaffold-Based Tissue Engineering Strategies for Osteochondral Repair. Front Bioeng Biotechnol 2022; 9:812383. [PMID: 35087809 PMCID: PMC8787149 DOI: 10.3389/fbioe.2021.812383] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Over centuries, several advances have been made in osteochondral (OC) tissue engineering to regenerate more biomimetic tissue. As an essential component of tissue engineering, scaffolds provide structural and functional support for cell growth and differentiation. Numerous scaffold types, such as porous, hydrogel, fibrous, microsphere, metal, composite and decellularized matrix, have been reported and evaluated for OC tissue regeneration in vitro and in vivo, with respective advantages and disadvantages. Unfortunately, due to the inherent complexity of organizational structure and the objective limitations of manufacturing technologies and biomaterials, we have not yet achieved stable and satisfactory effects of OC defects repair. In this review, we summarize the complicated gradients of natural OC tissue and then discuss various osteochondral tissue engineering strategies, focusing on scaffold design with abundant cell resources, material types, fabrication techniques and functional properties.
Collapse
Affiliation(s)
- Jiang-Nan Fu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng Yang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - You-Rong Chen
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Ji-Ying Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Rong-Hui Deng
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Zi-Ning Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Jia-Kuo Yu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Fu-Zhen Yuan
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
8
|
Dynamic process enhancement on chitosan/gelatin/nano-hydroxyapatite-bone derived multilayer scaffold for osteochondral tissue repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112662. [DOI: 10.1016/j.msec.2022.112662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
|
9
|
Pitta Kruize C, Panahkhahi S, Putra NE, Diaz-Payno P, van Osch G, Zadpoor AA, Mirzaali MJ. Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces. ACS Biomater Sci Eng 2021. [PMID: 34784181 DOI: 10.1021/acsbiomaterials.1c00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone-to-soft tissue interfaces are responsible for transferring loads between tissues with significantly dissimilar material properties. The examples of connective soft tissues are ligaments, tendons, and cartilages. Such natural tissue interfaces have unique microstructural properties and characteristics which avoid the abrupt transitions between two tissues and prevent formation of stress concentration at their connections. Here, we review some of the important characteristics of these natural interfaces. The native bone-to-soft tissue interfaces consist of several hierarchical levels which are formed in a highly specialized anisotropic fashion and are composed of different types of heterogeneously distributed cells. The characteristics of a natural interface can rely on two main design principles, namely by changing the local microarchitectural features (e.g., complex cell arrangements, and introducing interlocking mechanisms at the interfaces through various geometrical designs) and changing the local chemical compositions (e.g., a smooth and gradual transition in the level of mineralization). Implementing such design principles appears to be a promising approach that can be used in the design, reconstruction, and regeneration of engineered biomimetic tissue interfaces. Furthermore, prominent fabrication techniques such as additive manufacturing (AM) including 3D printing and electrospinning can be used to ease these implementation processes. Biomimetic interfaces have several biological applications, for example, to create synthetic scaffolds for osteochondral tissue repair.
Collapse
Affiliation(s)
- Carlos Pitta Kruize
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Sara Panahkhahi
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Niko Eka Putra
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Pedro Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Gerjo van Osch
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
10
|
Zhang Z, Lin S, Yan Y, You X, Ye H. Enhanced efficacy of transforming growth factor-β1 loaded an injectable cross-linked thiolated chitosan and carboxymethyl cellulose-based hydrogels for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2402-2422. [PMID: 34428384 DOI: 10.1080/09205063.2021.1971823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Growth factors (GFs) are soluble proteins extracellular that control a wide range of cellular processes as well as tissue regeneration. While transforming growth factor beta-1 (TGF-β1) promotes chondrogenesis, its medical use is restricted by its potential protein instability, which necessitates high doses of the protein, which can result in adverse side effects such as inefficient cartilage formation. In this work, we have developed a novel hydrogel composite based on the polymer, cross-linked thiolated chitosan; TCS and carboxymethyl cellulose; CMC (TCS/CMC) hydrogel system was utilized as injectable TGF-β1 carriers for cartilage tissue engineering applications. Rheological measurements showed that the elastic modulus of TCS/CMC hydrogels with an optimized CMC concentration could reach around 2.5 kPa or higher than their respective viscous modulus, indicating that they behaved like strong hydrogels. Crosslinking significantly alters the overall network distribution, surface morphology, pore size, porosity, gelation time, swelling ratio, water content, and in vitro degradation of the TCS/CMC hydrogels. TCS/CMC hydrogels maintain more than 90% of their weight and retain their original form after 21 days. TGF-β1 released marginally from TCS/CMC hydrogels as incubation time increased, up to 21 days, with around 18.6 ± 0.9% of the drug stored inside the TCS/CMC hydrogels. On day 21, BMSC treated with TGF-β1 in medium or TGF-β1-loaded TCS/CMC hydrogels grew faster than the other groups. For in vivo cartilage repair, full-thickness cartilage defects were induced on rat knees for 8 weeks. The optimal ability of this novel TGF-β1-loaded TCS/CMC hydrogel system was further demonstrated by histological analysis, resulting in a novel therapeutic strategy for repairing articular cartilage defects.Research HighlightsAn in situ forming and injectable thiolated chitosan and carboxymethyl cellulose hydrogel was fabricated for cartilage tissue engineering.TCS/CMC displays suitable gelation time with high swelling ratio, tunable mechanical properties and highly porous.TGF-β1-loaded-TCS/CMC hydrogels showed maximum drug release activity.TGF-β1-loaded-TCS/CMC hydrogels had good biocompatibility to articular chondrocytes.An injectable TCS/CMC/TGF-β1 hydrogel is a promising material system for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zefeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Shufeng Lin
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Yipeng Yan
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Xiaoxuan You
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Hui Ye
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| |
Collapse
|
11
|
Liao S, Meng H, Li J, Zhao J, Xu Y, Wang A, Xu W, Peng J, Lu S. Potential and recent advances of microcarriers in repairing cartilage defects. J Orthop Translat 2021; 27:101-109. [PMID: 33520655 PMCID: PMC7810913 DOI: 10.1016/j.jot.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/11/2022] Open
Abstract
Articular cartilage regeneration is one of the challenges faced by orthopedic surgeons. Microcarrier applications have made great advances in cartilage tissue engineering in recent years and enable cost-effective cell expansion, thus providing permissive microenvironments for cells. In addition, microcarriers can be loaded with proteins, factors, and drugs for cartilage regeneration. Some microcarriers also have the advantages of injectability and targeted delivery. The application of microcarriers with these characteristics can overcome the limitations of traditional methods and provide additional advantages. In terms of the transformation potential, microcarriers have not only many advantages, such as providing sufficient and beneficial cells, factors, drugs, and microenvironments for cartilage regeneration, but also many application characteristics; for example, they can be injected to reduce invasiveness, transplanted after microtissue formation to increase efficiency, or combined with other stents to improve mechanical properties. Therefore, this technology has enormous potential for clinical transformation. In this review, we focus on recent advances in microcarriers for cartilage regeneration. We compare the characteristics of microcarriers with other methods for repairing cartilage defects, provide an overview of the advantages of microcarriers, discuss the potential of microcarrier systems, and present an outlook for future development. Translational potential of this article We reviewed the advantages and recent advances of microcarriers for cartilage regeneration. This review could give many scholars a better understanding of microcarriers, which can provide doctors with potential methods for treating patients with cartilage injure.
Collapse
Affiliation(s)
- Sida Liao
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haoye Meng
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Junkang Li
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jun Zhao
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yichi Xu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Aiyuan Wang
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenjing Xu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiang Peng
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shibi Lu
- Institute of Orthopedics/ Beijing Key Laboratory of Regenerative Medicine in Orthopedics/ Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
12
|
Sokolova V, Kostka K, Shalumon KT, Prymak O, Chen JP, Epple M. Synthesis and characterization of PLGA/HAP scaffolds with DNA-functionalised calcium phosphate nanoparticles for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:102. [PMID: 33140175 PMCID: PMC7606283 DOI: 10.1007/s10856-020-06442-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/25/2020] [Indexed: 05/06/2023]
Abstract
Porous scaffolds of poly(lactide-co-glycolide) (PLGA; 85:15) and nano-hydroxyapatite (nHAP) were prepared by an emulsion-precipitation procedure from uniform PLGA-nHAP spheres (150-250 µm diameter). These spheres were then thermally sintered at 83 °C to porous scaffolds that can serve for bone tissue engineering or for bone substitution. The base materials PLGA and nHAP and the PLGA-nHAP scaffolds were extensively characterized by X-ray powder diffraction, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, and scanning electron microscopy. The scaffold porosity was about 50 vol% as determined by relating mass and volume of the scaffolds, together with the computed density of the solid phase (PLGA-nHAP). The cultivation of HeLa cells demonstrated their high cytocompatibility. In combination with DNA-loaded calcium phosphate nanoparticles, they showed a good activity of gene transfection with enhanced green fluorescent protein (EGFP) as model protein. This is expected enhance bone growth around an implanted scaffold or inside a scaffold for tissue engineering.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Kathrin Kostka
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - K T Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
- Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Collage of Medicine, Chang Gung University, Kwei-San, Taoyuan, 33305, Taiwan.
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany.
| |
Collapse
|
13
|
Effects of Magnesium Oxide (MgO) Shapes on In Vitro and In Vivo Degradation Behaviors of PLA/MgO Composites in Long Term. Polymers (Basel) 2020; 12:polym12051074. [PMID: 32397097 PMCID: PMC7284841 DOI: 10.3390/polym12051074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
Biodegradable devices for medical applications should be with an appropriate degradation rate for satisfying the various requirements of bone healing. In this study, composite materials of polylactic acid (PLA)/stearic acid-modified magnesium oxide (MgO) with a 1 wt% were prepared through blending extrusion, and the effects of the MgO shapes on the composites’ properties in in vitro and in vivo degradation were investigated. The results showed that the long-term degradation behaviors of the composite samples depended significantly on the filler shape. The degradation of the composites is accelerated by the increase in the water uptake rate of the PLA matrix and the composite containing the MgO nanoparticles was influenced more severely by the enhanced hydrophilicity. Furthermore, the pH value of the phosphate buffer solution (PBS) was obviously regulated by the dissolution of MgO through the neutralization of the acidic product of the PLA degradation. In addition, the improvement of the in vivo degrading process of the composite illustrated that the PLA/MgO materials can effectively regulate the degradation of the PLA matrix as well as raise its bioactivity, indicating the composites for utilization as a biomedical material matching the different requirements for bone-related repair.
Collapse
|
14
|
Zhu J, Kong Q, Zheng S, Wang Y, Jiao Z, Nie Y, Liu T, Song K. Toxicological evaluation of ionic liquid in a biological functional tissue construct model based on nano-hydroxyapatite/chitosan/gelatin hybrid scaffolds. Int J Biol Macromol 2020; 158:800-810. [PMID: 32387353 DOI: 10.1016/j.ijbiomac.2020.04.267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The application of ionic liquid is attracting more attentions as green replacement for volatile organic solvents. However, the toxic effects and risks of ionic liquid in different biological systems for human health and environment are poorly evaluated. Among all ionic liquids, 1-ethyl-3-methylimidazolium diethylphosphate ([Emim]DEP-type) ionic liquid is still at the early phase of development, and its toxicity remains unclear. In this study, we fabricated a 3D biological functional tissue construct model based on nano-hydroxyapatite, chitosan and gelatin hybrid scaffold and evaluated its toxic effects of [Emim]DEP-type ionic liquid. As a control group, the examination of ionic liquid's toxic effects on the pre-osteoblast cell line (MC3T3-E1) was detected in 2D cultures. The MTT assay showed that [Emim]DEP-type ionic liquid inhibited the proliferation of cells on both 2D cultures and 3D tissue constructs. This effect was correlated with culturing time and concentration, while the IC50 on 3D scaffolds (12,566, 9015, 7896 μg/mL, at 24 h, 48 h and 72 h, respectively) was found significantly higher compared to 2D cultures (3959, 2226, 1884 μg/mL). Flow cytometry analysis and scanning electron microscope demonstrated that when [Emim]DEP-type ionic liquid acted on MC3T3-E1 cells for 48 h, the shape of 2D cells shrank, together with decreased surface adhesion.
Collapse
Affiliation(s)
- Jingjing Zhu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qian Kong
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW 2139, Australia
| | - Zeren Jiao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
15
|
Jose G, Shalumon K, Liao HT, Kuo CY, Chen JP. Preparation and Characterization of Surface Heat Sintered Nanohydroxyapatite and Nanowhitlockite Embedded Poly (Lactic-co-glycolic Acid) Microsphere Bone Graft Scaffolds: In Vitro and in Vivo Studies. Int J Mol Sci 2020; 21:E528. [PMID: 31947689 PMCID: PMC7013730 DOI: 10.3390/ijms21020528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the context of using bone graft materials to restore and improve the function of damaged bone tissues, macroporous biodegradable composite bone graft scaffolds have osteoinductive properties that allow them to provide a suitable environment for bone regeneration. Hydroxyapatite (HAP) and whitlockite (WLKT) are the two major components of hard tissues such as bone and teeth. Because of their biocompatibility and osteoinductivity, we synthesized HAP (nHAP) and WLKT nanoparticles (nWLKT) by using the chemical precipitation method. The nanoparticles were separately incorporated within poly (lactic-co-glycolic acid) (PLGA) microspheres. Following this, the composite microspheres were converted to macroporous bone grafts with sufficient mechanical strength in pin or screw shape through surface sintering. We characterized physico-chemical and mechanical properties of the nanoparticles and composites. The biocompatibility of the grafts was further tested through in vitro cell adhesion and proliferation studies using rabbit bone marrow stem cells. The ability to promote osteogenic differentiation was tested through alkaline phosphate activity and immunofluorescence staining of bone marker proteins. For in vivo study, the bone pins were implanted in tibia bone defects in rabbits to compare the bone regeneration ability though H&E, Masson's trichrome and immunohistochemical staining. The results revealed similar physico-chemical characteristics and cellular response of PLGA/nHAP and PLGA/nWLKT scaffolds but the latter is associated with higher osteogenic potential towards BMSCs, pointing out the possibility to use this ceramic nanoparticle to prepare a sintered composite microsphere scaffold for potential bone grafts and tissue engineered implants.
Collapse
Affiliation(s)
- Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - K.T. Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Han-Tsung Liao
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
16
|
Zhao Y, Liu B, Bi H, Yang J, Li W, Liang H, Liang Y, Jia Z, Shi S, Chen M. The Degradation Properties of MgO Whiskers/PLLA Composite In Vitro. Int J Mol Sci 2018; 19:E2740. [PMID: 30217013 PMCID: PMC6165512 DOI: 10.3390/ijms19092740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 11/24/2022] Open
Abstract
In this study, composite films of stearic acid⁻modified magnesium oxide whiskers (Sa⁻w-MgO)/poly-l-lactic acid (PLLA) were prepared through solution casting, and the in vitro degradation properties and cytocompatibility of the composites with different whisker contents were investigated. The results showed that the degradation behavior of the composite samples depended significantly on the whisker content, and the degradation rate increased with the addition of MgO content. Furthermore, the degradation of the composites with higher contents of whiskers was influenced more severely by the hydrophilicity and pH value, leading to more final weight loss, but the decomposition rate decreased gradually. Furthermore, the pH value of the phosphate buffer solution (PBS) was obviously regulated by the dissolution of MgO whiskers through neutralization of the acidic product of PLLA degradation. The cytocompatibility of the composites also increased remarkably, as determined from the cell viability results, and was higher than that of PLLA at the chosen whisker content. This was beneficial for the cell affinity of the material, as it notably led to an enhanced biocompatibility of the PLLA, in favor of promoting cell proliferation, which significantly improved its bioactivity, as well.
Collapse
Affiliation(s)
- Yun Zhao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
- Key Laboratory of Display Materials and Photoelectric Device (Ministry of Education), Tianjin University of Technology, Tianjin 300384, China.
| | - Bei Liu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Hongwei Bi
- Tianjin Sannie Bioengineering Technology Co., Ltd., Tianjin 300384, China.
| | - Jinjun Yang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wei Li
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
- Key Laboratory of Display Materials and Photoelectric Device (Ministry of Education), Tianjin University of Technology, Tianjin 300384, China.
| | - Hui Liang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yue Liang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Zhibin Jia
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Shuxin Shi
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Minfang Chen
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
- Key Laboratory of Display Materials and Photoelectric Device (Ministry of Education), Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
17
|
Shalumon KT, Kuo CY, Wong CB, Chien YM, Chen HA, Chen JP. Gelatin/Nanohyroxyapatite Cryogel Embedded Poly(lactic- co-glycolic Acid)/Nanohydroxyapatite Microsphere Hybrid Scaffolds for Simultaneous Bone Regeneration and Load-Bearing. Polymers (Basel) 2018; 10:E620. [PMID: 30966654 PMCID: PMC6403993 DOI: 10.3390/polym10060620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 11/18/2022] Open
Abstract
It is desirable to combine load-bearing and bone regeneration capabilities in a single bone tissue engineering scaffold. For this purpose, we developed a high strength hybrid scaffold using a sintered poly(lactic-co-glycolic acid) (PLGA)/nanohydroxyapatite (nHAP) microsphere cavity fitted with gelatin/nHAP cryogel disks in the center. Osteo-conductive/osteo-inductive nHAP was incorporated in 250⁻500 μm PLGA microspheres at 40% (w/w) as the base matrix for the high strength cavity-shaped microsphere scaffold, while 20% (w/w) nHAP was incorporated into gelatin cryogels as an embedded core for bone regeneration purposes. The physico-chemical properties of the microsphere, cryogel, and hybrid scaffolds were characterized in detail. The ultimate stress and Young's modulus of the hybrid scaffold showed 25- and 21-fold increases from the cryogel scaffold. In vitro studies using rabbit bone marrow-derived stem cells (rBMSCs) in cryogel and hybrid scaffolds through DNA content, alkaline phosphatase activity, and mineral deposition by SEM/EDS, showed the prominence of both scaffolds in cell proliferation and osteogenic differentiation of rBMSCs in a normal medium. Calcium contents analysis, immunofluorescent staining of collagen I (COL I), and osteocalcin (OCN) and relative mRNA expression of COL I, OCN and osteopontin (OPN) confirmed in vitro differentiation of rBMSCs in the hybrid scaffold toward the bone lineage. From compression testing, the cell/hybrid scaffold construct showed a 1.93 times increase of Young's modulus from day 14 to day 28, due to mineral deposition. The relative mRNA expression of osteogenic marker genes COL I, OCN, and OPN showed 5.5, 18.7, and 7.2 folds increase from day 14 to day 28, respectively, confirming bone regeneration. From animal studies, the rBMSCs-seeded hybrid constructs could repair mid-diaphyseal tibia defects in rabbits, as evaluated by micro-computed tomography (μ-CT) and histological analyses. The hybrid scaffold will be useful for bone regeneration in load-bearing areas.
Collapse
Affiliation(s)
- K T Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Chak-Bor Wong
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
| | - Yen-Miao Chien
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Huai-An Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan.
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
18
|
da Silva Morais A, Oliveira JM, Reis RL. Small Animal Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:423-439. [DOI: 10.1007/978-3-319-76735-2_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Aravamudhan A, Ramos DM, Nip J, Kalajzic I, Kumbar SG. Micro-Nanostructures of Cellulose-Collagen for Critical Sized Bone Defect Healing. Macromol Biosci 2018; 18:10.1002/mabi.201700263. [PMID: 29178402 PMCID: PMC5835266 DOI: 10.1002/mabi.201700263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Indexed: 01/12/2023]
Abstract
Bone tissue engineering strategies utilize biodegradable polymeric matrices alone or in combination with cells and factors to provide mechanical support to bone, while promoting cell proliferation, differentiation, and tissue ingrowth. The performance of mechanically competent, micro-nanostructured polymeric matrices, in combination with bone marrow stromal cells (BMSCs), is evaluated in a critical sized bone defect. Cellulose acetate (CA) is used to fabricate a porous microstructured matrix. Type I collagen is then allowed to self-assemble on these microstructures to create a natural polymer-based, micro-nanostructured matrix (CAc). Poly (lactic-co-glycolic acid) matrices with identical microstructures serve as controls. Significantly higher number of implanted host cells are distributed in the natural polymer based micro-nanostructures with greater bone density and more uniform cell distribution. Additionally, a twofold increase in collagen content is observed with natural polymer based scaffolds. This study establishes the benefits of natural polymer derived micro-nanostructures in combination with donor derived BMSCs to repair and regenerate critical sized bone defects. Natural polymer based materials with mechanically competent micro-nanostructures may serve as an alternative material platform for bone regeneration.
Collapse
Affiliation(s)
- Aja Aravamudhan
- Skeletal Cranial Biology, UConn Health, Farmington, CT-06030, US
| | - Daisy M. Ramos
- Materials Science and Engineering, University of Connecticut, Storrs, CT-06269, US
| | - Jonathan Nip
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT-06269, US
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, Uconn Health, Farmington, CT-06030, US
| | - Sangamesh G. Kumbar
- Skeletal Cranial Biology, UConn Health, Farmington, CT-06030, US
- Materials Science and Engineering, University of Connecticut, Storrs, CT-06269, US
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT-06269, US
- Department of Orthopaedics, UConn Health, Farmington, CT-06030, US
| |
Collapse
|
20
|
Tsou CH, Yao WH, Lu YC, Tsou CY, Wu CS, Chen J, Wang RY, Su C, Hung WS, De Guzman M, Suen MC. Antibacterial Property and Cytotoxicity of a Poly(lactic acid)/Nanosilver-Doped Multiwall Carbon Nanotube Nanocomposite. Polymers (Basel) 2017; 9:E100. [PMID: 30970779 PMCID: PMC6431862 DOI: 10.3390/polym9030100] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/08/2017] [Indexed: 11/16/2022] Open
Abstract
A novel method was used to synthesize a nanosilver-doped multiwall carbon nanotube (MWCNT-Ag), and subsequently, the novel poly(lactic acid) (PLA)- and MWCNT-Ag-based biocompatible and antimicrobial nanocomposites were prepared by melt blending. Based on energy dispersive X-ray spectrometry images, an MWCNT-Ag was successfully synthesized. The effect of the MWCNT-Ag on the PLA bionanocomposites was investigated by evaluating their thermal and mechanical properties, antifungal activity, and cytotoxicity. The nanocomposites exhibited a high degree of biocompatibility with the MWCNT-Ag content, which was less than 0.3 phr. Furthermore, tensile strength testing, thermogravimetric analysis, differential scanning calorimetry, and antibacterial evaluation revealed that the tensile strength, thermostability, glass transition temperature, and antibacterial properties were enhanced by increasing the MWCNT-Ag content. Finally, hydrolysis analysis indicated that the low MWCNT-Ag content could increase the packing density of PLA.
Collapse
Affiliation(s)
- Chi-Hui Tsou
- Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China.
- Faculties of Biological and Chemical Engineering, Faculties of Materials Engineering, Science and Technology Innovation Center, Panzhihua University, Panzhihua 617000, China.
- Department of Materials Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Wei-Hua Yao
- Department of Materials and Textiles, Oriental Institute of Technology, New Taipei City 22061, Taiwan.
| | - Yi-Cheng Lu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Chih-Yuan Tsou
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
- Faculty of Electronic and Electrical Engineering, Huaiyin Institute of Technology, Huan'an 223003, China.
| | - Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung 82101, Taiwan.
| | - Jian Chen
- Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China.
| | - Ruo Yao Wang
- Department of Molecular Science & Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Chaochin Su
- Department of Molecular Science & Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Wei-Song Hung
- Center for Membrane Technology, Chung Yuan University, Taoyuan 32023, Taiwan.
| | - Manuel De Guzman
- Center for Membrane Technology, Chung Yuan University, Taoyuan 32023, Taiwan.
| | - Maw-Cherng Suen
- Department of Fashion Business Administration, Lee-Ming Institute of Technology, Taishan, New Taipei City 24305, Taiwan.
| |
Collapse
|