Bauri S, Donthireddy SNR, Illam PM, Rit A. Effect of Ancillary Ligand in Cyclometalated Ru(II)-NHC-Catalyzed Transfer Hydrogenation of Unsaturated Compounds.
Inorg Chem 2018;
57:14582-14593. [PMID:
30421610 DOI:
10.1021/acs.inorgchem.8b02246]
[Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to develop efficient Ru(II)-NHC-based catalyst considering their stereoelectronic effect for hydride-transfer reaction, we found that the ancillary NHC ligand can play a significant role in its catalytic performance. This effect is demonstrated by comparing the activity of two different types of orthometalated precatalysts of general formula [( p-cymene)(NHC)RuII(X)] (NHC = an imidazolylidene-based ImNHC, compound 2a-c, or a mesoionic triazolylidene-based tzNHC, compound 4) in transfer hydrogenation of carbonyl substrates. The electron-rich precatalyst, 2c, containing p-OMe-substituted NHC ligand performed significantly better than both unsubstituted complex 2a and p-CF3 substituted electron-poor complex 2b in ketone reduction. Whereas bulky mesoionic triazolylidene ligand containing complex 4 was found to be superior catalyst for aldehyde reduction and the precatalyst 2a is more suitable for the selective transfer hydrogenation of a wide range of aromatic aldimines to amines. To the best of our knowledge, this is the first systematic study on the effect of stereoelectronic tuning of ancillary orthometalated NHC ligand in Ru(II)-catalyzed transfer hydrogenations of various types of unsaturated compounds with broad substrate scope.
Collapse