1
|
Foli G, Capelli F, Grande M, Tagliabue S, Gherardi M, Minelli M. Optimization of Laminated Bio-Polymer Fabrication for Food Packaging Application: A Sustainable Plasma-Activated Approach. Polymers (Basel) 2024; 16:1851. [PMID: 39000706 PMCID: PMC11244328 DOI: 10.3390/polym16131851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
The current level of packaging consumption imposes a need to fabricate single-use food packaging with renewable and compostable materials, such as bio-polyesters (e.g., polylactic acid, PLA and polybutylene succinate, PBS) or cellulose, but their use is still problematic. Fabrication of bio-compostable composites can specifically address impeding challenges, and adhesive lamination, achieved with compostable glue, is becoming more and more popular with respect to the less versatile hot lamination. In this context, plasma activation, a chemical-free oxidation technique of a material's surface, is used to increase the affinity of three different biomaterials (cellulose, PLA and PBS) toward a compostable polyurethane adhesive to decrease its amount by gluing bio-polyesters to cellulose. Optical Microscopy reveals activation conditions that do not affect the integrity of the materials, while Water Contact Analyses confirm the activation of the surfaces, with contact angles decreased to roughly 50 deg in all cases. Unexpectedly, ζ-potential analyses and subtractive infrared spectroscopy highlight how the activation performed superficially etches cellulose, while for both PLA and PBS, a general decrease in surface potential and an increase in superficial hydroxyl group populations confirm the achievement of the desired oxidation. Thus, we rationalize continuous activation conditions to treat PLA and PBS and to glue them to neat cellulose. While no beneficial effect is observed with activated PLA, bi-laminate composites fabricated with activated PBS fulfill the benchmark for adhesion strength using less than before, while oxygen permeation analyses exclude plasma-induced etching even at a nanoscale.
Collapse
Affiliation(s)
- Giacomo Foli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Umberto Terracini, 28, 40131 Bologna, Italy
| | - Filippo Capelli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | - Mariachiara Grande
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | | | - Matteo Gherardi
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | - Matteo Minelli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Umberto Terracini, 28, 40131 Bologna, Italy
| |
Collapse
|
2
|
Nguyen LH, Tran TT, Nguyen TMT, Le HV, Nguyen KPL, Vu AN. Fabrication of a ternary biocomposite film based on polyvinyl alcohol, cellulose nanocrystals, and silver nanoparticles for food packaging. RSC Adv 2024; 14:18671-18684. [PMID: 38863813 PMCID: PMC11165488 DOI: 10.1039/d4ra02085e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Silver nanoparticles (AgNPs) were loaded on deprotonated cellulose nanocrystals (CNCd) and incorporated into polyvinyl alcohol (PVA) to develop novel active food packaging films. The AgNPs were fabricated using the liquid phase chemical reduction method using the sodium borohydride reductant of AgNO3. The analysis using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), and Ultraviolet-visible spectroscopy (UV-Vis) showed that the CNCd surface had a homogeneous distribution of AgNPs with a diameter of about 100 nm. Additionally, CNCd/Ag was successfully incorporated into the PVA film. The developed PVA/CNCd/Ag film showed significantly improved mechanical properties, thermal stability, and UV barrier properties compared to a neat PVA film. The PVA/CNCd/Ag composite film could significantly preserve bananas for 14 days, preventing deterioration and allowing extended storage periods. This composite film generally shows promise in food packaging and prolongs food's shelf life.
Collapse
Affiliation(s)
- Long Hoang Nguyen
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology 700000 Vietnam
| | - Trang Thanh Tran
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Thanh-My Thi Nguyen
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Hieu Van Le
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
- Laboratory of Multifunctional Materials, University of Science, VNU-HCM 700000 Vietnam
| | - Kim-Phung Le Nguyen
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology 700000 Vietnam
| | - An Nang Vu
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
3
|
Fotie G, Gazzotti S, Ortenzi MA, Limbo S, Piergiovanni L. Performance comparison of coatings based on cellulose nanocrystals and microfibrillated cellulose for food packaging. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
4
|
Ilami M, Bagheri H, Ahmed R, Skowronek EO, Marvi H. Materials, Actuators, and Sensors for Soft Bioinspired Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003139. [PMID: 33346386 DOI: 10.1002/adma.202003139] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/15/2020] [Indexed: 05/23/2023]
Abstract
Biological systems can perform complex tasks with high compliance levels. This makes them a great source of inspiration for soft robotics. Indeed, the union of these fields has brought about bioinspired soft robotics, with hundreds of publications on novel research each year. This review aims to survey fundamental advances in bioinspired soft actuators and sensors with a focus on the progress between 2017 and 2020, providing a primer for the materials used in their design.
Collapse
Affiliation(s)
- Mahdi Ilami
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Hosain Bagheri
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Reza Ahmed
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - E Olga Skowronek
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Hamid Marvi
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
5
|
Zheng J, Aziz T, Fan H, Haq F, Ullah Khan F, Ullah R, Ullah B, Saeed Khattak N, Wei J. Synergistic impact of cellulose nanocrystals with multiple resins on thermal and mechanical behavior. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
The cellulose nanocrystals (CNCs) surface modified with phenolic and acrylic resins were investigated for different properties such as thermally stability and adhesive property, the mechanical properties of CNCs and interactions of the resulting materials at a micro-level are very important. Phenolic resins are of great interest due to their smooth structure, low thermal conductivity and good thermal insulation. However, the high spray rates and poor mechanical properties limit its use for external insulation of buildings. Acrylic resins are used as a matrix resin for adhesives and composites due to their adhesion, mechanical properties, and their good chemical resistance. The brittleness of acrylic resins makes them less attractive than the structural materials, being much harder. For this reason, most of the resins are modified with suitable elastomers, which act as hardeners. Therefore, treatment of these compounds is necessary. In this research paper, the effect of CNCs surface on phenolic and acrylic resins were investigated to obtain an optimized surface using three different weight (wt%) ratios of CNCs. Scanning electronic microscopy (SEM), X-rays diffraction (XRD), Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure, and investigate different properties of CNCs. Furthermore, the Zwick/Roell Z020 model was used to investigate the adhesion properties of the phenolic and acrylic resins with CNCs.
Collapse
Affiliation(s)
- Jieyuan Zheng
- College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , 310027, China
| | - Tariq Aziz
- College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , 310027, China
| | - Hong Fan
- College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , 310027, China
| | - Fazal Haq
- College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , 310027, China
| | - Farman Ullah Khan
- Department of Chemistry , University of Science and Technology Bannu, Bannu , 28000, Pakistan
- Department of Chemistry , University of Lakki Marwat , Lakki Marwat 28420, KPK , Pakistan
| | - Roh Ullah
- School of Chemical and Biological Engineering , Beijing Institute of Technology (BIT) , Haidian , China
| | - Bakhtar Ullah
- Institute of Advanced Study , Shenzhen University , Shenzhen , China
| | | | - Jiao Wei
- College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , 310027, China
| |
Collapse
|
6
|
Fotie G, Limbo S, Piergiovanni L. Manufacturing of Food Packaging Based on Nanocellulose: Current Advances and Challenges. NANOMATERIALS 2020; 10:nano10091726. [PMID: 32878236 PMCID: PMC7558397 DOI: 10.3390/nano10091726] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022]
Abstract
Nowadays, environmental pollution due to synthetic polymers represents one of the biggest worldwide challenges. As demonstrated in numerous scientific articles, plant-based nanocellulose (NC) is a biodegradable and nontoxic material whose mechanical, rheological, and gas barrier properties are competitive compared to those of oil-based plastics. However, the sensitivity of NC in humid ambient and lack of thermosealability have proven to be a major obstacle that hinders its breakthrough in various sectors including food packaging. In recent years, attempts have been made in order to provide a hydrophobic character to NC through chemical modifications. In addition, extensive works on nanocellulose applications in food packaging such as coating, layer-by-layer, casting, and electrospinning have been reported. Despite these enormous advances, it can easily be observed that packaging manufacturers have not yet shown a particular interest in terms of applicability and processability of the nanocellulose due to the lack of guidelines and guarantee on the success of their implementation. This review is useful for researchers and packaging manufacturers because it puts emphasis on recent works that have dealt with the nanocellulose applications and focuses on the best strategies to be adopted for swift and sustainable industrial manufacturing scale-up of high-performance bio-based/compostable packaging in replacement of the oil-based counterparts used today.
Collapse
|
7
|
Highly Efficient Preparation of Functional and Thermostable Cellulose Nanocrystals via H2SO4 Intensified Acetic Acid Hydrolysis. Carbohydr Polym 2020; 239:116233. [DOI: 10.1016/j.carbpol.2020.116233] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
|
8
|
Aziz T, Fan H, Zhang X, Haq F, Ullah A, Ullah R, Khan FU, Iqbal M. Advance Study of Cellulose Nanocrystals Properties and Applications. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2020; 28:1117-1128. [DOI: 10.1007/s10924-020-01674-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
|
9
|
Nano-inspired oxygen barrier coatings for food packaging applications: An overview. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wang L, Chen C, Wang J, Gardner DJ, Tajvidi M. Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100464] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Atomic force microscopy reveals how relative humidity impacts the Young’s modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale. Int J Biol Macromol 2020; 147:1064-1075. [DOI: 10.1016/j.ijbiomac.2019.10.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 11/23/2022]
|
12
|
Amoroso L, Muratore G, Ortenzi MA, Gazzotti S, Limbo S, Piergiovanni L. Fast Production of Cellulose Nanocrystals by Hydrolytic-Oxidative Microwave-Assisted Treatment. Polymers (Basel) 2020; 12:polym12010068. [PMID: 31906478 PMCID: PMC7023600 DOI: 10.3390/polym12010068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/05/2022] Open
Abstract
In contrast to conventional approaches, which are considered to be energy- and time-intensive, expensive, and not green, herein, we report an alternative microwave-assisted ammonium persulfate (APS) method for cellulose nanocrystals (CNCs) production, under pressurized conditions in a closed reaction system. The aim was to optimize the hydrolytic-oxidative patented procedure (US 8,900,706), replacing the conventional heating with a faster process that would allow the industrial scale production of the nanomaterial and make it more appealing to a green economy. A microwave-assisted process was performed according to different time–temperature programs, varying the ramp (from 5 to 40 min) and the hold heating time (from 60 to 90 min), at a fixed reagent concentration and weight ratio of the raw material/APS solution. Differences in composition, structure, and morphology of the nanocrystals, arising from traditional and microwave methods, were studied by several techniques (TEM, Fourier transform infrared spectroscopy (FTIR)-attenuated total reflectance (ATR), dynamic light scattering (DLS), electrophoretic light scattering (ELS), thermogravimetric analysis (TGA), X-ray diffraction (XRD)), and the extraction yields were calculated. Fine tuning the microwave treatment variables, it was possible to realize a simple, cost-effective way for faster materials’ preparation, which allowed achieving high-quality CNCs, with a defined hydrodynamic diameter (150 nm) and zeta potential (−0.040 V), comparable to those obtained using conventional heating, in only 90 min instead of 16 h.
Collapse
Affiliation(s)
- Luana Amoroso
- Department of Agricultural, Food and Environment (Di3A), Università degli Studi di Catania, Via Santa Sofia 100, 95123 Catania, Italy; (L.A.); (G.M.)
| | - Giuseppe Muratore
- Department of Agricultural, Food and Environment (Di3A), Università degli Studi di Catania, Via Santa Sofia 100, 95123 Catania, Italy; (L.A.); (G.M.)
| | - Marco Aldo Ortenzi
- CRC Laboratorio di Materiali e Polimeri (LaMPo), Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (M.A.O.); (S.G.)
| | - Stefano Gazzotti
- CRC Laboratorio di Materiali e Polimeri (LaMPo), Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (M.A.O.); (S.G.)
| | - Sara Limbo
- DeFENS, Department of Food, Environmental and Nutritional Sciences—PackLAB Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;
| | - Luciano Piergiovanni
- DeFENS, Department of Food, Environmental and Nutritional Sciences—PackLAB Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-50316638
| |
Collapse
|
13
|
Carbon dioxide diffusion at different relative humidity through coating of cellulose nanocrystals for food packaging applications. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Zhang K, Yu Q, Zhu L, Liu S, Chi Z, Chen X, Zhang Y, Xu J. The Preparations and Water Vapor Barrier Properties of Polyimide Films Containing Amide Moieties. Polymers (Basel) 2017; 9:E677. [PMID: 30965976 PMCID: PMC6418874 DOI: 10.3390/polym9120677] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 11/30/2022] Open
Abstract
Flexible displays are a systematic revolution in the field of display, in which high-performance and high-barrier polymer substrates are considered to be one of the most important key materials. In this work, high water vapor barrier polyimides containing amide moieties were synthesized via the ternary polymerization of 4,4'-diaminobenzailide (DABA), 4,4'-diaminodipheny ether (ODA), and 3,3',4,4'-biphenyl-tetracarboxylic acid dianhydride (BPDA) followed by thermal imidization. The relationship between the content of amide moieties and the water vapor barrier property of the prepared polyimides was studied by means of density test, water absorbing test, water contact angle test, water vapor permeation test, fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), thermogravimetry coupled with fourier transform infrared spectrometry (TG-FTIR), wide-angle X-ray diffraction analysis (WXRD), mechanical performance test, etc. The results show that the introduction of amide groups into polyimide (PI) main chains can improve the water vapor barrier properties of the polyimides effectively. The water vapor transmission rate (WVTR) of the polyimide films can be improved from 8.2365 g·(m²·24 h)-1 to 0.8670 g·(m²·24 h)-1 with the increasing content of amide moieties.
Collapse
Affiliation(s)
- Kai Zhang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qiaoxi Yu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Longji Zhu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xudong Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yi Zhang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jiarui Xu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|