1
|
Ntetsikas K, Ladelta V, Bhaumik S, Hadjichristidis N. Quo Vadis Carbanionic Polymerization? ACS POLYMERS AU 2023; 3:158-181. [PMID: 37065716 PMCID: PMC10103213 DOI: 10.1021/acspolymersau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Living anionic polymerization will soon celebrate 70 years of existence. This living polymerization is considered the mother of all living and controlled/living polymerizations since it paved the way for their discovery. It provides methodologies for synthesizing polymers with absolute control of the essential parameters that affect polymer properties, including molecular weight, molecular weight distribution, composition and microstructure, chain-end/in-chain functionality, and architecture. This precise control of living anionic polymerization generated tremendous fundamental and industrial research activities, developing numerous important commodity and specialty polymers. In this Perspective, we present the high importance of living anionic polymerization of vinyl monomers by providing some examples of its significant achievements, presenting its current status, giving several insights into where it is going (Quo Vadis) and what the future holds for this powerful synthetic method. Furthermore, we attempt to explore its advantages and disadvantages compared to controlled/living radical polymerizations, the main competitors of living carbanionic polymerization.
Collapse
Affiliation(s)
- Konstantinos Ntetsikas
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Saibal Bhaumik
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Luo C, Alegre-Requena JV, Sujansky SJ, Pajk SP, Gallegos LC, Paton RS, Bandar JS. Mechanistic Studies Yield Improved Protocols for Base-Catalyzed Anti-Markovnikov Alcohol Addition Reactions. J Am Chem Soc 2022; 144:9586-9596. [PMID: 35605253 DOI: 10.1021/jacs.1c13397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic anti-Markovnikov addition of alcohols to simple alkenes is a longstanding synthetic challenge. We recently disclosed the use of organic superbase catalysis for the nucleophilic addition of alcohols to activated styrene derivatives. This article describes mechanistic studies on this reversible reaction, including thermodynamic and kinetic profiling as well as computational modeling. Our findings show the negative entropy of addition is counterbalanced by an enthalpy that is most favored in nonpolar solvents. However, a large negative alcohol rate order under these conditions indicates excess alcohol sequesters the active alkoxide ion pairs, slowing the reaction rate. These observations led to an unexpected solution to a thermodynamically challenging reaction: use of less alcohol enables faster addition, which in turn allows for lower reaction temperatures to counteract Le Chatelier's principle. Thus, our original method has been improved with new protocols that do not require excess alcohol stoichiometry, enable an expanded alkene substrate scope, and allow for the use of more practical catalyst systems. The generality of this insight for other challenging hydroetherification reactions is also demonstrated through new alkenol cyclization and oxa-Michael addition reactions.
Collapse
Affiliation(s)
- Chaosheng Luo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Juan V Alegre-Requena
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Stephen J Sujansky
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Spencer P Pajk
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Liliana C Gallegos
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
3
|
Ikeda S, Shintani R. Anionic stitching polymerization of styryl(vinyl)silanes for the synthesis of sila-cyclic olefin polymers. Chem Commun (Camb) 2022; 58:5281-5284. [PMID: 35393996 DOI: 10.1039/d2cc00721e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anionic stitching polymerization of styryl(vinyl)silanes has been developed for the synthesis of a new type of silicon- and carbon-containing polymer possessing fused sila-bicyclic structures in the main chain. The obtained polymers were found to be thermally stable with relatively high glass-transition temperatures and highly transparent in the visible light region.
Collapse
Affiliation(s)
- Sho Ikeda
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
4
|
Malik S, Sundarrajan S, Hussain T, Nazir A, Ramakrishna S. Role of Block Copolymers in Tissue Engineering Applications. Cells Tissues Organs 2021; 211:492-505. [PMID: 33596574 DOI: 10.1159/000511866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/24/2020] [Indexed: 11/19/2022] Open
Abstract
Research on synthesis, characterization, and understanding of novel properties of nanomaterials has led researchers to exploit their potential applications. When compared to other nanotechnologies described in the literature, electrospinning has received significant interest due to its ability to synthesize novel nanostructures (such as nanofibers, nanorods, nanotubes, etc.) with distinctive properties such as high surface-to-volume ratio, porosity, various morphologies such as fibers, tubes, ribbons, mesoporous and coated structures, and so on. Various materials such as polymers, ceramics, and composites have been fabricated using the electrospinning technique. Among them, polymers, especially block copolymers, are one of the useful and niche systems studied recently owing to their unique and fascinating properties in both solution and solid state due to thermodynamic incompatibility of the blocks, that results in microphase separation. Morphology and mechanical properties of electrospun block copolymers are intensely influenced by quantity and length of soft and hard segments. They are one of the best studied systems to fit numerous applications due to a broad variety of properties they display upon varying the composition ratio and molecular weight of blocks. In this review, the synthesis, fundamentals, electrospinning, and tissue engineering application of block copolymers are highlighted.
Collapse
Affiliation(s)
- Sairish Malik
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Faisalabad, Pakistan
| | - Subramanian Sundarrajan
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Tanveer Hussain
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Faisalabad, Pakistan
| | - Ahsan Nazir
- Electrospun Materials & Polymeric Membranes Research Group (EMPMRG), National Textile University, Faisalabad, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore,
| |
Collapse
|
5
|
Schmidt BVKJ. Trends in Polymers 2017/2018: Polymer Synthesis. Polymers (Basel) 2019; 12:E39. [PMID: 31881763 PMCID: PMC7023566 DOI: 10.3390/polym12010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/25/2022] Open
Abstract
Polymer synthesis is a substantial area in polymer science and marks the starting point for all sorts of polymer materials that have a plethora of applications in everyday life but also in academic research [...].
Collapse
|
6
|
Preparation of Butadiene-Isoprene Copolymer with High Vinyl Contents by Al(OPhCH₃)(i-Bu)₂/MoO₂Cl₂∙TNPP. Polymers (Basel) 2019; 11:polym11030527. [PMID: 30960511 PMCID: PMC6473405 DOI: 10.3390/polym11030527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 11/17/2022] Open
Abstract
In this study, a butadiene-isoprene coordination polymerization was initiated by a binary molybdenum (Mo)-based catalytic system consisting of modified MoO2Cl2 as the primary catalyst, triethyl aluminum substituted by m-cresol as the co-catalyst and tris(nonyl phenyl) phosphate (TNPP) as the ligand. The effects of the amount of catalyst and type of co-catalyst were investigated in detail. Experimental results indicated that when the butadiene-isoprene coordination polymerization was initiated by the binary Mo-based catalytic system, the monomer conversion could reach 90%. The resulting butadiene units were primarily based on 1,2-structures, and the reactivity ratios of butadiene and isoprene were 1.13 and 0.31, respectively. The reaction in the catalytic system was attributed to the non-ideal and non-constant ratio copolymerization. When the addition of isoprene monomers was relatively low, the isoprene units on the butadiene-isoprene copolymers were primarily based on the 1,2- and 3,4-structures. Moreover, the orientation of active centers to 1,2- and 3,4-structures gradually decreased with an increase in the addition of isoprene monomers, which resulted in the generation of high vinyl butadiene-isoprene copolymers.
Collapse
|
7
|
Puleo TR, Strong AJ, Bandar JS. Catalytic α-Selective Deuteration of Styrene Derivatives. J Am Chem Soc 2019; 141:1467-1472. [PMID: 30625273 DOI: 10.1021/jacs.8b12874] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report an operationally simple protocol for the catalytic α-deuteration of styrenes. This process proceeds via the base-catalyzed reversible addition of methanol to styrenes in DMSO -d6 solvent. The concentration of methanol is shown to be critical for high yields and selectivities over multiple competing side reactions. The synthetic utility of α-deuterated styrenes for accessing deuterium-labeled chiral benzylic stereocenters is demonstrated.
Collapse
Affiliation(s)
- Thomas R Puleo
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Alivia J Strong
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Jeffrey S Bandar
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
8
|
Preparation, Structure, and Properties of Sn-Functionalized Star-Shaped Styrene-Isoprene-Butadiene Copolymer. Macromol Res 2018. [DOI: 10.1007/s13233-018-6122-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Luo C, Bandar JS. Superbase-Catalyzed anti-Markovnikov Alcohol Addition Reactions to Aryl Alkenes. J Am Chem Soc 2018; 140:3547-3550. [DOI: 10.1021/jacs.8b00766] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chaosheng Luo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|