1
|
Alfonsi S, Karunathasan P, Mamodaly-Samdjee A, Balathandayutham K, Lefevre S, Miranda A, Gallet O, Seyer D, Hindié M. Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts' Adhesion but Affected Their Behavior. J Funct Biomater 2023; 15:5. [PMID: 38276478 PMCID: PMC10817067 DOI: 10.3390/jfb15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The implantation of metallic orthopedic prostheses is increasingly common due to an aging population and accidents. There is a real societal need to implement new metal implants that combine durability, good mechanical properties, excellent biocompatibility, as well as affordable costs. Since the functionalization of low-cost 316L stainless steel substrates through the successive electrodeposition of a polypyrrole film (PPy) and a calcium phosphate deposit doped with silicon was previously carried out by our labs, we have also developed a bio-functional coating by electrodepositing or oxidating of fibronectin (Fn) coating. Fn is an extracellular matrix glycoprotein involved in cell adhesion and differentiation. Impacts of either electrodeposition or oxidation on the structure and functionality of Fn were first studied. Thus, electrodeposition is the technique that permits the highest deposition of fibronectin, compared to adsorption or oxidation. Furthermore, electrodeposition seems to strongly modify Fn conformation by the formation of intermingled long fibers, resulting in changes to the accessibility of the molecular probes tested (antibodies directed against Fn whole molecule and Fn cell-binding domain). Then, the effects of either electrodeposited Fn or oxidized Fn were validated by the resulting pre-osteoblast behavior. Electrodeposition reduced pre-osteoblasts' ability to remodel Fn coating on supports because of a partial modification of Fn conformation, which reduced accessibility to the cell-binding domain. Electrodeposited Fn also diminished α5 integrin secretion and clustering along the plasma membrane. However, the N-terminal extremity of Fn was not modified by electrodeposition as demonstrated by Staphylococcus aureus attachment after 3 h of culture on a specific domain localized in this region. Moreover, the number of pre-osteoblasts remains stable after 3 h culture on either adsorbed, oxidized, or electrodeposited Fn deposits. In contrast, mitochondrial activity and cell proliferation were significantly higher on adsorbed Fn compared with electrodeposited Fn after 48 h culture. Hence, electro-deposited Fn seems more favorable to pre-osteoblast early-stage behavior than during a longer culture of 24 h and 48 h. The electrodeposition of matrix proteins could be improved to maintain their bio-activity and to develop this promising, fast technique to bio-functionalize metallic implants.
Collapse
Affiliation(s)
- Séverine Alfonsi
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Pithursan Karunathasan
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Ayann Mamodaly-Samdjee
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Keerthana Balathandayutham
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Sarah Lefevre
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Anamar Miranda
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Olivier Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Damien Seyer
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| |
Collapse
|
2
|
Thite NG, Ghazvini S, Wallace N, Feldman N, Calderon CP, Randolph TW. Interfacial Adsorption Controls Particle Formation in Antibody Formulations Subjected to Extensional Flows and Hydrodynamic Shear. J Pharm Sci 2023; 112:2766-2777. [PMID: 37453529 DOI: 10.1016/j.xphs.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
During their manufacturing and delivery to patients, therapeutic proteins are commonly exposed to various interfaces and to hydrodynamic shear forces. Although adsorption of proteins to solid-liquid interfaces is known to foster formation of protein aggregates and particles, the impact of shear remains controversial, in part because of experimental challenges in separating the effects of shear from those caused by simultaneous exposure to interfaces. Extensional flows (occurring when solutions flow through sudden contractions) exert localized elongational forces that have been suspected to be damaging to proteins. In this work, we measured aggregation and particle formation in formulations of polyclonal and monoclonal antibodies subjected to extensional flow, high shear (105 s-1) and exposure to stainless-steel/water interfaces. Modification of the surface charge at the stainless steel/water interface changed protein adsorption characteristics without altering shear profiles, enabling shear and interfacial interactions to be separated. Even under conditions where antibodies were subjected to high hydrodynamic shear and extensional flow, production of subvisible particles could be inhibited by modifying the stainless-steel surface charge to minimize antibody adsorption. Digital images of particles recorded by flow imaging microscopy (FIM) and analyzed with machine learning algorithms were consistent with a particle formation mechanism by which antibodies adsorb and aggregate at the stainless-steel/water interface and subsequently form particles when shear displaces the interfacial aggregates, transporting them into the bulk solution. Topographical differences measured using atomic force microscopy (AFM) supported the proposed mechanism by showing reduced levels of protein adsorption on surface-charge-modified stainless-steel.
Collapse
Affiliation(s)
- Nidhi G Thite
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | | | | | | | - Christopher P Calderon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States; Ursa Analytics, Denver, CO 80212, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
3
|
Su S, Chen W, Zheng M, Lu G, Tang W, Huang H, Qu D. Facile Fabrication of 3D-Printed Porous Ti6Al4V Scaffolds with a Sr-CaP Coating for Bone Regeneration. ACS OMEGA 2022; 7:8391-8402. [PMID: 35309469 PMCID: PMC8928158 DOI: 10.1021/acsomega.1c05908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/10/2022] [Indexed: 05/12/2023]
Abstract
To improve osseointegration caused by the stress-shielding effect and the inert nature of titanium-based alloys, in this work, we successfully constructed a strontium calcium phosphate (Sr-CaP) coating on three-dimensional (3D)-printed Ti6Al4V scaffolds to address this issue. The energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) results indicated that the coatings with and without Sr doping mainly consisted of CaHPO4. The bonding strength of Sr doping coating met the required ISO 13 779-4-2018 standard (≥15 MPa). The in vitro results suggested that the Sr-CaP-modified Ti6Al4V scaffolds were found to effectively promote mice bone-marrow stem cell (mBMSC) adhesion, spreading, and osteogenesis. The in vivo experiments also showed that the Sr-CaP-modified Ti6Al4V scaffolds could significantly improve bone regeneration and osseointegration. More importantly, Sr-doped CaP-coated Ti6Al4V scaffolds were found to accelerate bone healing in comparison to CaP-coated Ti6Al4V scaffolds. The Sr-CaP-modified Ti6Al4V scaffolds are considered a promising strategy to develop bioactive surfaces for enhancing the osseointegration between the implant and bone tissue.
Collapse
Affiliation(s)
- Shenghui Su
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Weidong Chen
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Minghui Zheng
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
- Department
of Orthopaedic Surgery, Zengcheng Branch of Nanfang Hospital, Southern Medical University, 511338 Guangzhou, China
| | - Guozan Lu
- Guangzhou
Huatai 3D Material Manufacture Ltd., Co., 511300 Guangzhou, China
| | - Wei Tang
- Department
of Anatomy, College of Basic Medicine, Dalian
Medical University, Dalian 116044, China
| | - Haihong Huang
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Dongbin Qu
- Division
of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
- Department
of Orthopaedic Surgery, Zengcheng Branch of Nanfang Hospital, Southern Medical University, 511338 Guangzhou, China
| |
Collapse
|
4
|
Zhang C, He L, Chen Y, Dai D, Su Y, Shao L. Corrosion Behavior and In Vitro Cytotoxicity of Ni-Ti and Stainless Steel Arch Wires Exposed to Lysozyme, Ovalbumin, and Bovine Serum Albumin. ACS OMEGA 2020; 5:18995-19003. [PMID: 32775901 PMCID: PMC7408227 DOI: 10.1021/acsomega.0c02312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
In this study, the tendency and mechanisms by which protein and mechanical loads contribute to corrosion were determined by exposing Ni-Ti and stainless steel arch wires under varying mechanical loads to artificial saliva containing different types of protein (lysozyme, ovalbumin, and bovine serum albumin). The corrosion behavior and in vitro cytotoxicity results show that exposure to both protein and mechanical stress significantly decreased the corrosion resistance of stainless steel and increased the release of toxic corrosion products. Adding protein inhibited the corrosion of Ni-Ti, but the mechanical loads counteracted this effect. Even proteins containing the same types of amino acids had different effects on the corrosion resistance of the same alloy. The effect of protein or stress, or their combination, should be considered in the application of metal medical materials.
Collapse
Affiliation(s)
- Chao Zhang
- Stomatology
Center, Shunde Hospital, Southern Medical
University (The First People’s Hospital of Shunde), Foshan 528300, China
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longwen He
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuming Chen
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Danni Dai
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatology
Center, Shunde Hospital, Southern Medical
University (The First People’s Hospital of Shunde), Foshan 528300, China
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological
Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong
Provincial Key Laboratory of Construction and Detection in Tissue
Engineering, Guangzhou 510515, China
| |
Collapse
|
5
|
Khosravi F, Nouri Khorasani S, Khalili S, Esmaeely Neisiany R, Rezvani Ghomi E, Ejeian F, Das O, Nasr-Esfahani MH. Development of a Highly Proliferated Bilayer Coating on 316L Stainless Steel Implants. Polymers (Basel) 2020; 12:E1022. [PMID: 32369977 PMCID: PMC7284519 DOI: 10.3390/polym12051022] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/26/2022] Open
Abstract
In this research, a bilayer coating has been applied on the surface of 316 L stainless steel (316LSS) to provide highly proliferated metallic implants for bone regeneration. The first layer was prepared using electrophoretic deposition of graphene oxide (GO), while the top layer was coated utilizing electrospinning of poly (ε-caprolactone) (PCL)/gelatin (Ge)/forsterite solutions. The morphology, porosity, wettability, biodegradability, bioactivity, cell attachment and cell viability of the prepared coatings were evaluated. The Field Emission Scanning Electron Microscopy (FESEM) results revealed the formation of uniform, continuous, and bead-free nanofibers. The Energy Dispersive X-ray (EDS) results confirmed well-distributed forsterite nanoparticles in the structure of the top coating. The porosity of the electrospun nanofibers was found to be above 70%. The water contact angle measurements indicated an improvement in the wettability of the coating by increasing the amount of nanoparticles. Furthermore, the electrospun nanofibers containing 1 and 3 wt.% of forsterite nanoparticles showed significant bioactivity after soaking in the simulated body fluid (SBF) solution for 21 days. In addition, to investigate the in vitro analysis, the MG-63 cells were cultured on the PCL/Ge/forsterite and GO-PCL/Ge/forsterite coatings. The results confirmed an excellent cell adhesion along with considerable cell growth and proliferation. It should be also noted that the existence of the forsterite nanoparticles and the GO layer substantially enhanced the cell proliferation of the coatings.
Collapse
Affiliation(s)
- Fatemeh Khosravi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran; (F.K.); (S.K.)
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran; (F.K.); (S.K.)
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran; (F.K.); (S.K.)
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Erfan Rezvani Ghomi
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 119260, Singapore;
| | - Fatemeh Ejeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8159358686, Iran;
| | - Oisik Das
- Material Science Division, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8159358686, Iran;
| |
Collapse
|
6
|
Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies. Molecules 2020; 25:molecules25092047. [PMID: 32353995 PMCID: PMC7249052 DOI: 10.3390/molecules25092047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022] Open
Abstract
Monoclonal antibodies (mAbs) are an important class of biotherapeutics; as of 2020, dozens are commercialized medicines, over a hundred are in clinical trials, and many more are in preclinical developmental stages. Therapeutic mAbs are sequence modified from the wild type IgG isoforms to varying extents and can have different intrinsic structural stability. For chronic treatments in particular, high concentration (≥ 100 mg/mL) aqueous formulations are often preferred for at-home administration with a syringe-based device. MAbs, like any globular protein, are amphiphilic and readily adsorb to interfaces, potentially causing structural deformation and even unfolding. Desorption of structurally perturbed mAbs is often hypothesized to promote aggregation, potentially leading to the formation of subvisible particles and visible precipitates. Since mAbs are exposed to numerous interfaces during biomanufacturing, storage and administration, many studies have examined mAb adsorption to different interfaces under various mitigation strategies. This review examines recent published literature focusing on adsorption of bioengineered mAbs under well-defined solution and surface conditions. The focus of this review is on understanding adsorption features driven by distinct antibody domains and on recent advances in establishing model interfaces suitable for high resolution surface measurements. Our summary highlights the need to further understand the relationship between mAb interfacial adsorption and desorption, solution aggregation, and product instability during fill-finish, transport, storage and administration.
Collapse
|
7
|
Qing Y, Li K, Li D, Qin Y. Antibacterial effects of silver incorporated zeolite coatings on 3D printed porous stainless steels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110430. [PMID: 31923959 DOI: 10.1016/j.msec.2019.110430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Functionalization of porous metals with antibacterial coatings is hotly pursued in recent decade. Here we fabricated a highly porous stainless steel component by selective laser melting and then coated with silver incorporated zeolite by in situ hydrothermal crystallization method. The morphology of their surface was investigated by scanning electron microscopy. The inhibition of Escherichia coli and Staphylococcus aureus were identified by bacterial viability studies after 24 h of incubation. More importantly, the obtained coatings show better osteointegration by spreading bone marrow stromal cells (BMSCs) after cultured with different scaffold extract solutions for 1, 3, and 5 days. These results suggest that silver incorporated zeolite coatings on 3D printed porous stainless steels exhibit better antibacterial activity and biocompatibility, showing potential application in the field of medical implant materials.
Collapse
Affiliation(s)
- Yunan Qing
- Orthopaedic Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Kaishen Li
- Key Laboratory of Automobile Materials of MOE, Department of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Dongdong Li
- Key Laboratory of Automobile Materials of MOE, Department of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yanguo Qin
- Orthopaedic Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
8
|
Filarsky F, Schmuck C, Schultz HJ. Development of a Surface-Active Coating for Promoted Gas Hydrate Formation. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201800002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Florian Filarsky
- University of Duisburg-Essen; Institute of Organic Chemistry; Universitätsstraße 7 45141 Essen Germany
- University of Applied Sciences Niederrhein; Faculty of Chemistry, Chemical Engineering; Adlerstraße 32 47798 Krefeld Germany
| | - Carsten Schmuck
- University of Duisburg-Essen; Institute of Organic Chemistry; Universitätsstraße 7 45141 Essen Germany
| | - Heyko Jürgen Schultz
- University of Applied Sciences Niederrhein; Faculty of Chemistry, Chemical Engineering; Adlerstraße 32 47798 Krefeld Germany
| |
Collapse
|