1
|
Cheng CY, Wang YS, Wang ZL, Bibi S. Innovative Approaches to Fungal Food Production: Mycelial Pellet Morphology Insights. Foods 2023; 12:3477. [PMID: 37761188 PMCID: PMC10530132 DOI: 10.3390/foods12183477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Mycelia products enhance edible mushrooms in alignment with future sustainability trends. To meet forthcoming market demands, the morphology of mycelial pellets was optimized for direct consumption. Among ten commercial edible mushrooms in Taiwan, Pleurotus sp. was selected for its rapid growth and was identified via an internal transcribed spacer sequence. A combination of Plackett-Burman design and Taguchi's L9(34) orthogonal table revealed the optimal formula as potato dextrose broth (2.4%), olive oil (2%), calcium carbonate (0.5%), yeast extract (0.75%), and soy flour (0.5%). This led to a biomass increase to 19.9 ± 1.1 g/L, resulting in a 2.17-fold yield increase. To refine morphology, image processing by ImageJ quantified spherical characteristics. The addition of 0.2 to 1.0% Tween 80 enhanced pellet compaction by over 50%. Dilution of the medium improved uniformity (0.85) and conversion rate (42%), yielding mycelial pellets with 2.10 ± 0.52 mm diameters and a yield of 15.1 ± 0.6 g/L. These findings provide an alternative evaluation and application of edible mycelial pellets as future food.
Collapse
Affiliation(s)
- Chih-Yu Cheng
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-S.W.); (Z.-L.W.); (S.B.)
| | - Yu-Sheng Wang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-S.W.); (Z.-L.W.); (S.B.)
| | - Zhong-Liang Wang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-S.W.); (Z.-L.W.); (S.B.)
| | - Sidra Bibi
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-S.W.); (Z.-L.W.); (S.B.)
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| |
Collapse
|
2
|
Muñoz AJ, Espínola F, Ruiz E, Cuartero M, Castro E. Biotechnological use of the ubiquitous fungus Penicillium sp. 8L2: Biosorption of Ag(I) and synthesis of silver nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115281. [PMID: 35588666 DOI: 10.1016/j.jenvman.2022.115281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, the efficiency of the ubiquitous fungus Penicillium sp. 8L2 to remove Ag(I) ions from synthetic solutions and its potential to synthesize silver nanoparticles (AgNPs) was evaluated. Using a Rotatable Central Composite Design pH and biomass concentration were optimized. Maximum biosorption capacity 51.53 mg/g, by Langmuir model, comparing favourably with other reports. The fungal biomass was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and analyzed before and after the biosorption process by different techniques: X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Ultra-High Resolution Transmission Electron Microscopy and Energy Dispersive X-ray (HR-TEM-EDX) and Ultraviolet-Visible Spectrophotometry (UV-vis). The results showed that the fungus applied several mechanisms to remove Ag(I) ions from the solution and that some of them induced the synthesis of AgNPs. This fact could be verified in the synthesis tests from the cell extract in which aqueous suspensions with high concentrations of AgNPs were obtained. These nanoparticles had diameters between 2 and 9 nm and therefore a high potential for their use as biocidal agents. The results indicated that the synthesis of nanoparticles could be an added value to the heavy metal biosorption process.
Collapse
Affiliation(s)
- Antonio J Muñoz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain.
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain; Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Encarnación Ruiz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain; Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - María Cuartero
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain; Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| |
Collapse
|