1
|
Ashkanani Z, Mohtar R, Al-Enezi S, Smith PK, Calabrese S, Ma X, Abdullah M. AI-assisted systematic review on remediation of contaminated soils with PAHs and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133813. [PMID: 38402679 DOI: 10.1016/j.jhazmat.2024.133813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
This systematic review addresses soil contamination by crude oil, a pressing global environmental issue, by exploring effective treatment strategies for sites co-contaminated with heavy metals and polycyclic aromatic hydrocarbons (PAHs). Our study aims to answer pivotal research questions: (1) What are the interaction mechanisms between heavy metals and PAHs in contaminated soils, and how do these affect the efficacy of different remediation methods? (2) What are the challenges and limitations of combined remediation techniques for co-contaminated soils compared to single-treatment methods in terms of efficiency, stability, and specificity? (3) How do various factors influence the effectiveness of biological, chemical, and physical remediation methods, both individually and combined, in co-contaminated soils, and what role do specific agents play in the degradation, immobilization, or removal of heavy metals and PAHs under diverse environmental conditions? (4) Do AI-powered search tools offer a superior alternative to conventional search methodologies for executing an exhaustive systematic review? Utilizing big-data analytics and AI tools such as Litmaps.co, ResearchRabbit, and MAXQDA, this study conducts a thorough analysis of remediation techniques for soils co-contaminated with heavy metals and PAHs. It emphasizes the significance of cation-π interactions and soil composition in dictating the solubility and behavior of these pollutants. The study pays particular attention to the interplay between heavy metals and PAH solubility, as well as the impact of soil properties like clay type and organic matter on heavy metal adsorption, which results in nonlinear sorption patterns. The research identifies a growing trend towards employing combined remediation techniques, especially biological strategies like biostimulation-bioaugmentation, noting their effectiveness in laboratory settings, albeit with potentially higher costs in field applications. Plants such as Medicago sativa L. and Solanum nigrum L. are highlighted for their effectiveness in phytoremediation, working synergistically with beneficial microbes to decompose contaminants. Furthermore, the study illustrates that the incorporation of biochar and surfactants, along with chelating agents like EDTA, can significantly enhance treatment efficiency. However, the research acknowledges that varying environmental conditions necessitate site-specific adaptations in remediation strategies. Life Cycle Assessment (LCA) findings indicate that while high-energy methods like Steam Enhanced Extraction and Thermal Resistivity - ERH are effective, they also entail substantial environmental and financial costs. Conversely, Natural Attenuation, despite being a low-impact and cost-effective option, may require prolonged monitoring. The study advocates for an integrative approach to soil remediation, one that harmoniously balances environmental sustainability, cost-effectiveness, and the specific requirements of contaminated sites. It underscores the necessity of a holistic strategy that combines various remediation methods, tailored to meet both regulatory compliance and the long-term sustainability of decontamination efforts.
Collapse
Affiliation(s)
- Zainab Ashkanani
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Rabi Mohtar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Salah Al-Enezi
- Petroleum Research Center, Kuwait Institute for Scientific Research, Al-Ahmadi, Kuwait
| | - Patricia K Smith
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Salvatore Calabrese
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Meshal Abdullah
- Sultan Qaboos University, College of Arts & Social Sciences. Al-Khoud, Sultanate of Oman
| |
Collapse
|
2
|
Banerjee S, Gupta N, Pramanik K, Gope M, GhoshThakur R, Karmakar A, Gogoi N, Hoque RR, Mandal NC, Balachandran S. Microbes and microbial strategies in carcinogenic polycyclic aromatic hydrocarbons remediation: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1811-1840. [PMID: 38063960 DOI: 10.1007/s11356-023-31140-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Degradation, detoxification, or removal of the omnipresent polycyclic aromatic hydrocarbons (PAHs) from the ecosphere as well as their prevention from entering into food chain has never appeared simple. In this context, cost-effective, eco-friendly, and sustainable solutions like microbe-mediated strategies have been adopted worldwide. With this connection, measures have been taken by multifarious modes of microbial remedial strategies, i.e., enzymatic degradation, biofilm and biosurfactant production, application of biochar-immobilized microbes, lactic acid bacteria, rhizospheric-phyllospheric-endophytic microorganisms, genetically engineered microorganisms, and bioelectrochemical techniques like microbial fuel cell. In this review, a nine-way directional approach which is based on the microbial resources reported over the last couple of decades has been described. Fungi were found to be the most dominant taxa among the CPAH-degrading microbial community constituting 52.2%, while bacteria, algae, and yeasts occupied 37.4%, 9.1%, and 1.3%, respectively. In addition to these, category-wise CPAH degrading efficiencies of each microbial taxon, consortium-based applications, CPAH degradation-related molecular tools, and factors affecting CPAH degradation are the other important aspects of this review in light of their appropriate selection and application in the PAH-contaminated environment for better human-health management in order to achieve a sustainable ecosystem.
Collapse
Affiliation(s)
- Sandipan Banerjee
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Nitu Gupta
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Krishnendu Pramanik
- Microbiology and Microbial Bioinformatics Laboratory, Department of Botany, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar, 736101, West Bengal, India
| | - Manash Gope
- Department of Environmental Science, The University of Burdwan, Golapbag, 713104, West Bengal, India
| | - Richik GhoshThakur
- Department of Environmental Studies, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Animesh Karmakar
- Department of Chemistry, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Nayanmoni Gogoi
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Raza Rafiqul Hoque
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Narayan Chandra Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Srinivasan Balachandran
- Department of Environmental Studies, Visva-Bharati, Santiniketan, 731235, West Bengal, India.
| |
Collapse
|