1
|
Yadav RP, Huo C, Budhathoki R, Budthapa P, Bhattarai BR, Rana M, Kim KH, Parajuli N. Antibacterial, Antifungal, and Cytotoxic Effects of Endophytic Streptomyces Species Isolated from the Himalayan Regions of Nepal and Their Metabolite Study. Biomedicines 2024; 12:2192. [PMID: 39457511 PMCID: PMC11505041 DOI: 10.3390/biomedicines12102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Recently, antimicrobial-resistant pathogens and cancers have emerged as serious global health problems, highlighting the immediate need for novel therapeutics. Consequently, we aimed to isolate and characterize endophytic Streptomyces strains from the rhizospheres of the Himalayan region of Nepal and identify specialized metabolites with antibacterial, antifungal, and cytotoxic potential. Methods: To isolate Streptomyces sp., we collected two soil samples and cultured them on an ISP4 medium after pretreatment. We isolated and identified the strains PY108 and PY109 using a combination of morphological observations and 16S rRNA gene sequencing. Results: The BLAST results showed that PY108 and PY109 resembled Streptomyces hundungensis PSB170 and Streptomyces sp. Ed-065 with 99.28% and 99.36% nucleotide similarity, respectively. Antibacterial assays of ethyl acetate (EA) extracts from both isolates PY108 and PY109 in a tryptic soy broth (TSB) medium were conducted against four pathogenic bacteria. They showed significant antibacterial potential against Staphylococcus aureus and Klebsiella pneumoniae. Similarly, these extracts exhibited moderate antifungal activities against Saccharomyces cerevisiae and Aspergillus niger. Cytotoxicity assays on cervical cancer cells (HeLa) and breast cancer cells (MCF-7) revealed significant potential for both extracts. LC-MS/MS profiling of the EA extracts identified 27 specialized metabolites, including diketopiperazine derivatives, aureolic acid derivatives such as chromomycin A, and lipopeptide derivatives. In comparison, GC-MS analysis detected 34 metabolites, including actinomycin D and γ-sitosterol. Furthermore, a global natural product social molecular networking (GNPS)-based molecular networking analysis dereplicated 24 metabolites in both extracts. Conclusions: These findings underscore the potential of endophytic Streptomyces sp. PY108 and PY109 to develop new therapeutics in the future.
Collapse
Affiliation(s)
- Ram Prabodh Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal; (R.P.Y.); (R.B.); (P.B.)
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Rabin Budhathoki
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal; (R.P.Y.); (R.B.); (P.B.)
| | - Padamlal Budthapa
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal; (R.P.Y.); (R.B.); (P.B.)
| | - Bibek Raj Bhattarai
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA;
| | - Monika Rana
- Central Department of Biotechnology, Tribhuvan University, Kirtipur 44618, Nepal;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal; (R.P.Y.); (R.B.); (P.B.)
| |
Collapse
|
2
|
Thapa BB, Huo C, Budhathoki R, Chaudhary P, Joshi S, Poudel PB, Magar RT, Parajuli N, Kim KH, Sohng JK. Metabolic Comparison and Molecular Networking of Antimicrobials in Streptomyces Species. Int J Mol Sci 2024; 25:4193. [PMID: 38673777 PMCID: PMC11050201 DOI: 10.3390/ijms25084193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Streptomyces are well-known for producing bioactive secondary metabolites, with numerous antimicrobials essential to fight against infectious diseases. Globally, multidrug-resistant (MDR) microorganisms significantly challenge human and veterinary diseases. To tackle this issue, there is an urgent need for alternative antimicrobials. In the search for potent agents, we have isolated four Streptomyces species PC1, BT1, BT2, and BT3 from soils collected from various geographical regions of the Himalayan country Nepal, which were then identified based on morphology and 16S rRNA gene sequencing. The relationship of soil microbes with different Streptomyces species has been shown in phylogenetic trees. Antimicrobial potency of isolates was carried out against Staphylococcus aureus American Type Culture Collection (ATCC) 43300, Shigella sonnei ATCC 25931, Salmonella typhi ATCC 14028, Klebsiella pneumoniae ATCC 700603, and Escherichia coli ATCC 25922. Among them, Streptomyces species PC1 showed the highest zone of inhibition against tested pathogens. Furthermore, ethyl acetate extracts of shake flask fermentation of these Streptomyces strains were subjected to liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis for their metabolic comparison and Global Natural Products Social Molecular Networking (GNPS) web-based molecular networking. We found very similar metabolite composition in four strains, despite their geographical variation. In addition, we have identified thirty-seven metabolites using LC-MS/MS analysis, with the majority belonging to the diketopiperazine class. Among these, to the best of our knowledge, four metabolites, namely cyclo-(Ile-Ser), 2-n-hexyl-5-n-propylresorcinol, 3-[(6-methylpyrazin-2-yl) methyl]-1H-indole, and cyclo-(d-Leu-l-Trp), were detected for the first time in Streptomyces species. Besides these, other 23 metabolites including surfactin B, surfactin C, surfactin D, and valinomycin were identified with the help of GNPS-based molecular networking.
Collapse
Affiliation(s)
- Bijaya Bahadur Thapa
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Rabin Budhathoki
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Pratiksha Chaudhary
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Soniya Joshi
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
| | - Purna Bahadur Poudel
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Rubin Thapa Magar
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Kathmandu, Nepal; (B.B.T.); (R.B.); (P.C.); (S.J.); (N.P.)
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jae Kyung Sohng
- Institute of Biomolecule Reconstruction (iBR), Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (R.T.M.)
| |
Collapse
|
3
|
Gamaleldin NM, Bahr HS, Millán-Aguiñaga N, Danesh M, Othman EM, Dandekar T, Hassan HM, Abdelmohsen UR. Targeting antimalarial metabolites from the actinomycetes associated with the Red Sea sponge Callyspongia siphonella using a metabolomic method. BMC Microbiol 2023; 23:396. [PMID: 38087203 PMCID: PMC10714608 DOI: 10.1186/s12866-023-03094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Malaria is a persistent illness that is still a public health issue. On the other hand, marine organisms are considered a rich source of anti‑infective drugs and other medically significant compounds. Herein, we reported the isolation of the actinomycete associated with the Red Sea sponge Callyspongia siphonella. Using "one strain many compounds" (OSMAC) approach, a suitable strain was identified and then sub-cultured in three different media (M1, ISP2 and OLIGO). The extracts were evaluated for their in-vitro antimalarial activity against Plasmodium falciparum strain and subsequently analyzed by Liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS). In addition, MetaboAnalyst 5.0 was used to statistically analyze the LC-MS data. Finally, Molecular docking was carried out for the dereplicated metabolites against lysyl-tRNA synthetase (PfKRS1). The phylogenetic study of the 16S rRNA sequence of the actinomycete isolate revealed its affiliation to Streptomyces genus. Antimalarial screening revealed that ISP2 media is the most active against Plasmodium falciparum strain. Based on LC-HR-MS based metabolomics and multivariate analyses, the static cultures of the media, ISP2 (ISP2-S) and M1 (M1-S), are the optimal media for metabolites production. OPLS-DA suggested that quinone derivatives are abundant in the extracts with the highest antimalarial activity. Fifteen compounds were identified where eight of these metabolites were correlated to the observed antimalarial activity of the active extracts. According to molecular docking experiments, saframycin Y3 and juglomycin E showed the greatest binding energy scores (-6.2 and -5.13) to lysyl-tRNA synthetase (PfKRS1), respectively. Using metabolomics and molecular docking investigation, the quinones, saframycin Y3 (5) and juglomycin E (1) were identified as promising antimalarial therapeutic candidates. Our approach can be used as a first evaluation stage in natural product drug development, facilitating the separation of chosen metabolites, particularly biologically active ones.
Collapse
Affiliation(s)
- Noha M Gamaleldin
- Department of Microbiology, Faculty of Pharmacy, the British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Hebatallah S Bahr
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Natalie Millán-Aguiñaga
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, 22860, Baja California, México
| | - Mahshid Danesh
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
| | - Eman M Othman
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
| | - Hossam M Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Usama Ramadan Abdelmohsen
- Department of pharmacognosy, faculty of Pharmacy, Minia University, Minia, Egypt.
- Department of pharmacognosy, faculty of Pharmacy, Deraya University, New Minia City, 61111, Minia, Egypt.
| |
Collapse
|
4
|
Prabhakar Ganesh PSK, Muthuraja P, Gopinath P. Rh(III) Catalyzed Redox-Neutral C-H Activation/[5 + 2] Annulation of Aroyl Hydrazides and Sulfoxonium Ylides: Synthesis of Benzodiazepinones. Org Lett 2023; 25:8361-8366. [PMID: 37963274 DOI: 10.1021/acs.orglett.3c03495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We herein report the Rh(III) catalyzed redox-neutral C-H activation/[5 + 2] annulation of aroyl hydrazides with sulfoxonium ylides as safe carbene precursors. The reaction shows excellent functional group tolerance, broad substrate scope, and scalability. We demonstrated the synthetic utility of the protocol via the synthesis of various diazepam drug analogues, late-stage functionalization of probenecid drug, and large scale synthesis. Finally, kinetic studies revealed C-H activation as the rate-determining step.
Collapse
Affiliation(s)
| | - Perumal Muthuraja
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Purushothaman Gopinath
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
5
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
6
|
Hamed AA, Mohamed OG, Aboutabl EA, Fathy FI, Fawzy GA, El-Shiekh RA, Al-Karmalawy AA, Al-Taweel AM, Tripathi A, Elsayed TR. Identification of Antimicrobial Metabolites from the Egyptian Soil-Derived Amycolatopsis keratiniphila Revealed by Untargeted Metabolomics and Molecular Docking. Metabolites 2023; 13:metabo13050620. [PMID: 37233661 DOI: 10.3390/metabo13050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Actinomycetes are prolific producers of bioactive secondary metabolites. The prevalence of multidrug-resistant (MDR) pathogens has prompted us to search for potential natural antimicrobial agents. Herein, we report the isolation of rare actinobacteria from Egyptian soil. The strain was identified as Amycolatopsis keratiniphila DPA04 using 16S rRNA gene sequencing. Cultivation profiling, followed by chemical and antimicrobial evaluation of crude extracts, revealed the activity of DPA04 ISP-2 and M1 culture extracts against Gram-positive bacteria. Minimum inhibitory concentrations (MIC) values ranged from 19.5 to 39 µg/mL. Chemical analysis of the crude extracts using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF) led to the identification of 45 metabolites of different chemical classes. In addition, ECO-0501 was identified in the cultures with significant antimicrobial activity. Multidrug resistance in Staphylococcus aureus is reported to be related to the multidrug efflux pump (MATE). ECO-0501 and its related metabolites were subjected to molecular docking studies against the MATE receptor as a proposed mechanism of action. ECO-0501 and its derivatives (AK_1 and N-demethyl ECO-0501) had better binding scores (-12.93, -12.24, and -11.92 kcal/mol) than the co-crystallized 4HY inhibitor (-8.99 kcal/mol) making them promising candidates as MATE inhibitors. Finally, our work established that natural products from this strain could be useful therapeutic tools for controlling infectious diseases.
Collapse
Affiliation(s)
- Ahmed A Hamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elsayed A Aboutabl
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Fify I Fathy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Ghada A Fawzy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Areej M Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tarek R Elsayed
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
7
|
Gamaleldin NM, Bahr HS, Mostafa YA, McAllister BF, El Zawily A, Ngwa CJ, Pradel G, Hassan HM, Abdelmohsen UR, Alkhalifah DHM, Hozzein WN. Metabolomic Profiling, In Vitro Antimalarial Investigation and In Silico Modeling of the Marine Actinobacterium Strain Rhodococcus sp. UR111 Associated with the Soft Coral Nephthea sp. Antibiotics (Basel) 2022; 11:1631. [PMID: 36421275 PMCID: PMC9686727 DOI: 10.3390/antibiotics11111631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 09/24/2023] Open
Abstract
Malaria is a persistent illness with a great public health concern. To combat this fatal disease, developing effective antimalarial medications has become a necessity. In the present study, we described the actinomycetes associated with the Red Sea soft coral Nephthea sp. and isolated a strain that was sub-cultured in three different media (M1, ISP2, and OLIGO). Actinomycete isolate's phylogenetic analysis of the 16S rRNA gene revealed that it belongs to the genus Rhodococcus. In vitro screening of the antimalarial activity for three extracts against Plasmodium falciparum was carried out. Non-targeted metabolomics for the chemical characterization of the isolated actinomycete species UA111 derived extracts were employed using high-resolution liquid chromatography-mass spectrometry (LC-HR-MS) for dereplication purposes. Additionally, statistical analysis of the vast LC-MS data was performed using MetaboAnalyst 5.0. Finally, an in silico analysis was conducted to investigate the potential chemical compounds that could be the source of the antimalarial potential. The results revealed that ISP2 media extract is the most effective against Plasmodium falciparum, according to antimalarial screening (IC50 8.5 µg/mL), in contrast, OLIGO media extract was inactive. LC-HRMS-based metabolomics identified a range of metabolites, mainly alkaloids, from the genus Rhodococcus. On the other hand, multivariate analysis showed chemical diversity between the analyzed samples, with ISP2 extract being optimal. The docking analysis was able to anticipate the various patterns of interaction of the annotated compounds with three malarial protein targets (P. falciparum kinase, P. falciparum cytochrome bc1 complex, and P. falciparum lysyl-tRNA synthetase). Among all of the test compounds, perlolyrine (11) and 3097-B2 (12) displayed the best docking profiles. In conclusion, this work demonstrated the value of the established method for the metabolic profiling of marine actinomycetes using the data from liquid chromatography-mass spectrometry (LC-MS), which helps to streamline the difficult isolation stages required for their chemical characterization. In addition, the antimalarial efficacy of this strain has intriguing implications for future pharmaceutical development.
Collapse
Affiliation(s)
- Noha M. Gamaleldin
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo 11837, Egypt
| | - Hebatallah S. Bahr
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt
| | - Yaser A. Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | | | - Amr El Zawily
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324, USA
- Department of Plant and Microbiology, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Che J. Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
8
|
Characterization of Streptomyces Species and Validation of Antimicrobial Activity of Their Metabolites through Molecular Docking. Processes (Basel) 2022. [DOI: 10.3390/pr10102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Finding new antibacterial agents from natural products is urgently necessary to address the growing cases of antibiotic-resistant pathogens. Actinomycetes are regarded as an excellent source of therapeutically important secondary metabolites including antibiotics. However, they have not yet been characterized and explored in great detail for their utility in developing countries such as Nepal. In silico molecular docking in addition to antimicrobial assays have been used to examine the efficacy of chemical scaffolds biosynthesized by actinomycetes. This paper depicts the characterization of actinomycetes based on their morphology, biochemical tests, and partial molecular sequencing. Furthermore, antimicrobial assays and mass spectrometry-based metabolic profiling of isolates were studied. Seventeen actinomycete-like colonies were isolated from ten soil samples, of which three isolates showed significant antimicrobial activities. Those isolates were subsequently identified to be Streptomyces species by partial 16S rRNA gene sequencing. The most potent Streptomyces species_SB10 has exhibited an MIC and MBC of 1.22 μg/mL and 2.44 μg/mL, respectively, against each Staphylococcus aureus and Shigella sonnei. The extract of S. species_SB10 showed the presence of important metabolites such as albumycin. Ten annotated bioactive metabolites (essramycin, maculosin, brevianamide F, cyclo (L-Phe-L-Ala), cyclo (L-Val-L-Phe), cyclo (L-Leu-L-Pro), cyclo (D-Ala-L-Pro), N6, N6-dimethyladenosine, albumycin, and cyclo (L-Tyr-L-Leu)) were molecularly docked against seven antimicrobial target proteins. Studies on binding energy, docking viability, and protein-ligand molecular interactions showed that those metabolites are responsible for conferring antimicrobial properties. These findings indicate that continuous research on the isolation of the Streptomyces species from Nepal could lead to the discovery of novel and therapeutically relevant antimicrobial agents in the future.
Collapse
|