1
|
T FX, R S, A K FR, S B, R K, M A, S V, S P, S A, K S, M T. Phytochemical composition, anti-microbial, anti-oxidant and anti-diabetic effects of Solanum elaeagnifolium Cav. leaves: in vitro and in silico assessments. J Biomol Struct Dyn 2025; 43:3688-3714. [PMID: 38180058 DOI: 10.1080/07391102.2023.2300124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
The aim of this study was to screen the chemical components of Solanum elaeagnifolium leaves and assess their therapeutic attributes with regard to their antioxidant, antibacterial, and antidiabetic activities. The antidiabetic effects were explored to determine the α-amylase and α-glucosidase inhibitory potential of the leaf extract. To identify the active antidiabetic drugs from the extracts, the GC-MS-screened molecules were docked with diabetes-related proteins using the glide module in the Schrodinger Tool. In addition, molecular dynamics (MD) simulations were performed for 100 ns to evaluate the binding stability of the docked complex using the Desmond module. The ethyl acetate had a significant total phenolic content (TPC), with a value of 79.04 ± 0.98 mg/g GAE. The ethanol extract was tested for its minimum inhibitory concentration (MIC) for its bacteriostatic properties. It suppressed the growth of B. subtilis, E. coli, P. vulgaris, R. equi and S. epidermis at a dosage of 118.75 µg/mL. Moreover, the IC50 values of the ethanol extract were determined to be 17.78 ± 2.38 in the α-amylase and and 27.90 ± 5.02 µg/mL in α-glucosidase. The in-silico investigation revealed that cyclolaudenol achieved docking scores of -7.94 kcal/mol for α-amylase. Likewise, the α-tocopherol achieved the docking scores of -7.41 kcal/mol for glycogen phosphorylase B and -7.21 kcal/mol for phosphorylase kinase. In the MD simulations, the cyclolaudenol and α-tocopherol complexes exhibited consistently stable affinities with diabetic proteins throughout the trajectory. Based on these findings, we conclude that this plant could be a good source for the development of novel antioxidant, antibacterial, and antidiabetic agents.
Collapse
Affiliation(s)
- Francis Xavier T
- Ethnopharmacological Research Unit, PG and Research Department of Botany, St. Joseph's College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sabitha R
- Ethnopharmacological Research Unit, PG and Research Department of Botany, St. Joseph's College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Freeda Rose A K
- PG and Research Department of Botany, Holy Cross College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Balavivekananthan S
- Ethnopharmacological Research Unit, PG and Research Department of Botany, St. Joseph's College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kariyat R
- Department of Biology, The University of Texas, Rio Grande Valley, W University Dr, Edinburg, TX, USA
| | - Ayyanar M
- PG and Research Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Bharathidasan University, Poondi, Tamil Nadu, India
| | - Vijayakumar S
- PG and Research Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Bharathidasan University, Poondi, Tamil Nadu, India
| | - Prabhu S
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, India
| | - Amalraj S
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, India
| | - Shine K
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Thiruvengadam M
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Korea
| |
Collapse
|
2
|
Wróblewski M, Wróblewska J, Nuszkiewicz J, Mila-Kierzenkowska C, Woźniak A. Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation. Molecules 2024; 29:5310. [PMID: 39598700 PMCID: PMC11596956 DOI: 10.3390/molecules29225310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Oxidative stress, characterized by an overproduction of reactive oxygen species that overwhelm the body's physiological defense mechanisms, is a key factor in the progression of parasitic diseases in both humans and animals. Scabies, a highly contagious dermatological condition caused by the mite Sarcoptes scabiei var. hominis, affects millions globally, particularly in developing regions. The infestation leads to severe itching and skin rashes, triggered by allergic reactions to the mites, their eggs, and feces. Conventional scabies treatments typically involve the use of scabicidal agents, which, although effective, are often associated with adverse side effects and the increasing threat of resistance. In light of these limitations, there is growing interest in the use of medicinal plants as alternative therapeutic options. Medicinal plants, rich in bioactive compounds with antioxidant properties, offer a promising, safer, and potentially more effective approach to treatment. This review explores the role of oxidative stress in scabies pathogenesis and highlights how medicinal plants can mitigate this by reducing inflammation and oxidative damage, thereby alleviating symptoms and improving patient outcomes. Through their natural antioxidant potential, these plants may serve as viable alternatives or complementary therapies in the management of scabies, especially in cases where resistance to conventional treatments is emerging.
Collapse
Affiliation(s)
| | | | | | | | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| |
Collapse
|
3
|
Albaseer SS, Al-Hazmi HE, Kurniawan TA, Xu X, Abdulrahman SAM, Ezzati P, Habibzadeh S, Hollert H, Rabiee N, Lima EC, Badawi M, Saeb MR. Microplastics in water resources: Global pollution circle, possible technological solutions, legislations, and future horizon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173963. [PMID: 38901599 DOI: 10.1016/j.scitotenv.2024.173963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Beneath the surface of our ecosystems, microplastics (MPs) silently loom as a significant threat. These minuscule pollutants, invisible to the naked eye, wreak havoc on living organisms and disrupt the delicate balance of our environment. As we delve into a trove of data and reports, a troubling narrative unfolds: MPs pose a grave risk to both health and food chains with their diverse compositions and chemical characteristics. Nevertheless, the peril extends further. MPs infiltrate the environment and intertwine with other pollutants. Worldwide, microplastic levels fluctuate dramatically, ranging from 0.001 to 140 particles.m-3 in water and 0.2 to 8766 particles.g-1 in sediment, painting a stark picture of pervasive pollution. Coastal and marine ecosystems bear the brunt, with each organism laden with thousands of microplastic particles. MPs possess a remarkable ability to absorb a plethora of contaminants, and their environmental behavior is influenced by factors such as molecular weight and pH. Reported adsorption capacities of MPs vary greatly, spanning from 0.001 to 12,700 μg·g-1. These distressing figures serve as a clarion call, demanding immediate action and heightened environmental consciousness. Legislation, innovation, and sustainable practices stand as indispensable defenses against this encroaching menace. Grasping the intricate interplay between microplastics and pollutants is paramount, guiding us toward effective mitigation strategies and preserving our health ecosystems.
Collapse
Affiliation(s)
- Saeed S Albaseer
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | | | - Xianbao Xu
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Peyman Ezzati
- ERA Co., Ltd, Science and Technology Center, P.O. Box: 318020, Taizhou, Zhejiang, China
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Henner Hollert
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Eder C Lima
- Institute of Chemistry - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Michael Badawi
- Université de Lorraine, CNRS, Laboratoire Lorrain de Chimie Moléculaire, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
4
|
Kurniawan TA, Mohyuddin A, Othman MHD, Goh HH, Zhang D, Anouzla A, Aziz F, Casila JC, Ali I, Pasaribu B. Beyond surface: Unveiling ecological and economic ramifications of microplastic pollution in the oceans. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11070. [PMID: 39005104 DOI: 10.1002/wer.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.
Collapse
Affiliation(s)
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Dongdong Zhang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Changes, Semlalia Faculty of Sciences, B.P. 2390, Cadi Ayyad University, Marrakech, Morocco
| | - Joan C Casila
- Land and Water Resources Engineering Division, Institute of Agricultural and Biosystems Engineering, College of Engineering and Agro-industrial Technology, University of the Philippines-Los Baños, Los Baños, Philippines
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
5
|
Amjad M, Mohyuddin A, Ulfat W, Goh HH, Dzarfan Othman MH, Kurniawan TA. UV-blocking and photocatalytic properties of Ag-coated cotton fabrics with Si binders for photo-degradation of recalcitrant dyes in aqueous solutions under sunlight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120287. [PMID: 38335595 DOI: 10.1016/j.jenvman.2024.120287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Textile wastewater laden with dyes has emerged as a source of water pollution. This possesses a challenge in its effective treatment using a single functional material. In respond to this technological constraint, this work presents multifunctional cotton fabrics (CFs) within a single, streamlined preparation process. This approach utilizes the adherence of Ag NPs (nanoparticles) using Si binder on the surface of CFs, resulting in Ag-coated CFs through a pad dry method. The prepared samples were characterized using scanning electron microscope-energy dispersive X-ray electroscopy (SEM-EDS), thermal gravimetric analysis (TGA), Fourier transformation infrared (FT-IR). It was found that the FT-IR spectra of Ag NPs-coated CFs had peaks appear at 3400, 2900, and 1200 cm-1, implying the stretching vibrations of O-H, C-H, and C-O, respectively. Based on the EDX analysis, the presence of C, O, and Ag related to the coated CFs were detected. After coating the CFs with varying concentrations of Ag NPs (1%, 2% and 3% (w/w)), they were used to remove dyes. Under the same concentration of 10 mg/L and optimized pH 7.5 and 2 h of reaction time, 3% (w/w) Ag-coated CFs exhibited a substantial MB degradation of 98 %, while removing 95% of methyl orange, 85% of rhodamine B, and 96% of Congo red, respectively, following 2 h of Vis exposure. Ag NPs had a strong absorption at 420 nm with 2.51 eV of energy band gap. Under UV irradiation, electrons excited and produced free radicals that promoted dyes photodegradation. The oxidation by-products included p-dihydroxybenzene and succinic acid. Spent Ag-coated CFs attained 98% of regeneration efficiency. The utilization of Ag-coated CFs as a photocatalyst facilitated treated effluents to meet the required discharge standard of lower than 1 mg/L mandated by national legislation. The integration of multifunctional CFs in the treatment system presents a new option for tackling water pollution due to dyes.
Collapse
Affiliation(s)
- Muhammad Amjad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan.
| | - Wajad Ulfat
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, China
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor Bahru, Malaysia
| | | |
Collapse
|
6
|
Kurniawan TA, Liang X, Goh HH, Dzarfan Othman MH, Anouzla A, Al-Hazmi HE, Chew KW, Aziz F, Ali I. Leveraging food waste for electricity: A low-carbon approach in energy sector for mitigating climate change and achieving net zero emission in Hong Kong (China). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119879. [PMID: 38157574 DOI: 10.1016/j.jenvman.2023.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
In recent years, food waste has been a global concern that contributes to climate change. To deal with the rising impacts of climate change, in Hong Kong, food waste is converted into electricity in the framework of low-carbon approach. This work provides an overview of the conversion of food waste into electricity to achieve carbon neutrality. The production of methane and electricity from waste-to-energy (WTE) conversion are determined. Potential income from its sale and environmental benefits are also assessed quantitatively and qualitatively. It was found that the electricity generation from the food waste could reach 4.33 × 109 kWh annually, avoiding equivalent electricity charge worth USD 3.46 × 109 annually (based on US' 8/kWh). An equivalent CO2 mitigation of 9.9 × 108 kg annually was attained. The revenue from its electricity sale in market was USD 1.44×109 in the 1st year and USD 4.24 ×109 in the 15th year, respectively, according to the projected CH4 and electricity generation. The modelling study indicated that the electricity production is 0.8 kWh/kg of landfilled waste. The food waste could produce electricity as low as US' 8 per kW ∙ h. In spite of its promising results, there are techno-economic bottlenecks in commercial scale production and its application at comparable costs to conventional fossil fuels. Issues such as high GHG emissions and high production costs have been determined to be resolved later. Overall, this work not only leads to GHG avoidance, but also diversifies energy supply in providing power for homes in the future.
Collapse
Affiliation(s)
| | - Xue Liang
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Abdelkader Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Hassan II University, Mohammedia, 28806, Morocco
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
7
|
Staveckienė J, Medveckienė B, Jarienė E, Kulaitienė J. Effects of Different Ripening Stages on the Content of the Mineral Elements and Vitamin C of the Fruit Extracts of Solanum Species: S. melanocerasum, S. nigrum, S. villosum, and S. retroflexum. PLANTS (BASEL, SWITZERLAND) 2024; 13:343. [PMID: 38337877 PMCID: PMC10857400 DOI: 10.3390/plants13030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Studies on the mineral and vitamin C contents of different species and ripening stages of Solanum fruits are very limited. The aim of the research was to evaluate the content of the mineral elements and vitamin C of four different Solanum species (S. melanocerasum-SM, S. nigrum-SN, S. villosum-SV and S. retroflexum-SR), and three ripening stages. The mineral composition of Solanum fruits was detected using a CEM MARS 6® (Matthews, NC, USA) digestion system outfitted with a 100 mL Teflon vessel, by microwave-assisted extraction (MAE). In total, eleven mineral elements were detected (K, Ca, Mg, P, Fe, Na, Cu, B, Mn, Al, and Zn). Vitamin C content was assessed by a spectrophotometric method. Depending on the ripening stage/species, content of microelements ranged from 756.48 mg kg-1 DW in SV fruits at ripening stage III, to 211.12 mg kg-1 DW in SM fruits at ripening stage III. The dominant microelement was Fe. The total content of macroelements in Solanum fruits ranged from 26,104.95 mg kg-1 DW in SV fruits at ripening stage II to 67,035.23 mg kg-1 DW in SR fruits at ripening stage I. The dominant macroelement was K. The data from two experimental years showed that the significantly highest content of vitamin C was in SM fruits and ranged from 48.15 mg 100 g-1 at ripening stage I to 45.10 mg 100 g-1 at ripening stage III.
Collapse
Affiliation(s)
- Jūratė Staveckienė
- Department of Plant Biology and Food Sciences, Vytautas Magnus University Agriculture Academy, 44001 Kaunas, Lithuania; (B.M.); (E.J.); (J.K.)
| | | | | | | |
Collapse
|
8
|
Ulfat W, Mohyuddin A, Amjad M, Othman MHD, Gikas P, Kurniawan TA. Fabrication, characterization, and application of light weight thermal insulation material from combined buffing dust and plaster of paris for construction industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119129. [PMID: 37778073 DOI: 10.1016/j.jenvman.2023.119129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Buffing dust, generated from tannery industries, is a source of air pollution in Pakistan. Valorization of the waste into another useful material is important to deal with the environmental pollution, while reducing waste disposal costs in landfills. To demonstrate its technological strength, this work fabricates a thermal insulation material made of plaster of Paris and the buffing dust (from tanning waste) in the form of a composite with superior mechanical properties and low thermal conductivity. Buffing dust with concentrations ranging from 5 to 20% (w/w) were loaded in the composite. The samples synthesized were made slurry of plaster of Paris, buffing dust, and water at ambient temperature. The physico-mechanical properties of composite were analyzed. It was found that the composite had better thermal insulation properties than the panels of the plaster of Paris. Its thermal conductivity was reduced to 15% after adding buffing dust (20% w/w). All the materials had physico-chemical properties like tensile strength (0.02 MPa and 0.06 MPa), density (700-400 kg/m3), water absorption (5.2-8.6%) and thermal conductivity (0.17000-0.09218 W/m-K). Thermogravimetric analysis showed that the material was thermally stable at temperatures ranging from 145 to 177 °C, while FT-IR results revealed that the composite contained O-H, N-H, and CO functional groups. SEM analysis displayed that the composite's homogeneity was reduced with low voids due to buffing dust addition, while EDX analysis showed that the composite contained 23.62% of S, 26.76% of Ca, 49.2% of O and 0.42% of C. This implies that buffing dust could be recycled to manufacture heat insulation materials for construction sector to reduce air pollution, while minimizing energy consumption. By integrating the buffing dust from tanning waste and the plaster of Paris as a composite for construction sector, this work promotes the recycling of unused waste, while saving public funds. Instead of paying landfill fees and polluting soil, the waste may be recycled at lower cost, while reducing environmental damage.
Collapse
Affiliation(s)
- Wajad Ulfat
- Department of Chemistry, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Muhammad Amjad
- Department of Chemistry, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Petros Gikas
- Technical University of Crete, School of Chemical and Environmental Engineering, Chania, Greece
| | | |
Collapse
|
9
|
Kurniawan TA, Haider A, Mohyuddin A, Fatima R, Salman M, Shaheen A, Ahmad HM, Al-Hazmi HE, Othman MHD, Aziz F, Anouzla A, Ali I. Tackling microplastics pollution in global environment through integration of applied technology, policy instruments, and legislation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118971. [PMID: 37729832 DOI: 10.1016/j.jenvman.2023.118971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Microplastic pollution is a serious environmental problem that affects both aquatic and terrestrial ecosystems. Small particles with size of less than 5 mm, known as microplastics (MPs), persist in the environment and pose serious threats to various species from micro-organisms to humans. However, terrestrial environment has received less attention than the aquatic environment, despite being a major source of MPs that eventually reaches water body. To reflect its novelty, this work aims at providing a comprehensive overview of the current state of MPs pollution in the global environment and various solutions to address MP pollution by integrating applied technology, policy instruments, and legislation. This review critically evaluates and compares the existing technologies for MPs detection, removal, and degradation, and a variety of policy instruments and legislation that can support the prevention and management of MPs pollution scientifically. Furthermore, this review identifies the gaps and challenges in addressing the complex and diverse nature of MPs and calls for joint actions and collaboration from stakeholders to contain MPs. As water pollution by MPs is complex, managing it effectively requires their responses through the utilization of technology, policy instruments, and legislation. It is evident from a literature survey of 228 published articles (1961-2023) that existing water technologies are promising to remove MPs pollution. Membrane bioreactors and ultrafiltration achieved 90% of MPs removal, while magnetic separation was effective at extracting 88% of target MPs from wastewater. In biological process, one kg of wax worms could consume about 80 g of plastic/day. This means that 100 kg of wax worms can eat about 8 kg of plastic daily, or about 2.9 tons of plastic annually. Overall, the integration of technology, policy instrument, and legislation is crucial to deal with the MPs issues.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Rida Fatima
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Salman
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Anila Shaheen
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan; Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
10
|
Kurniawan TA, Othman MHD, Liang X, Goh HH, Gikas P, Kusworo TD, Anouzla A, Chew KW. Decarbonization in waste recycling industry using digitalization to promote net-zero emissions and its implications on sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117765. [PMID: 36965421 DOI: 10.1016/j.jenvman.2023.117765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Digitalization and sustainability have been considered as critical elements in tackling a growing problem of solid waste in the framework of circular economy (CE). Although digitalization can enhance time-efficiency and/or cost-efficiency, their end-results do not always lead to sustainability. So far, the literatures still lack of a holistic view in understanding the development trends and key roles of digitalization in waste recycling industry to benefit stakeholders and to protect the environment. To bridge this knowledge gap, this work systematically investigates how leveraging digitalization in waste recycling industry could address these research questions: (1) What are the key problems of solid waste recycling? (2) How the trends of digitalization in waste management could benefit a CE? (3) How digitalization could strengthen waste recycling industry in a post-pandemic era? While digitalization boosts material flows in a CE, it is evident that utilizing digital solutions to strengthen waste recycling business could reinforce a resource-efficient, low-carbon, and a CE. In the Industry 4.0 era, digitalization can add 15% (about USD 15.7 trillion) to global economy by 2030. As digitalization grows, making the waste sector shift to a CE could save between 30% and 35% of municipalities' waste management budget. With digitalization, a cost reduction of 3.6% and a revenue increase of 4.1% are projected annually. This would contribute to USD 493 billion in an increasing revenue yearly in the next decade. As digitalization enables tasks to be completed shortly with less manpower, this could save USD 421 billion annually for the next decade. With respect to environmental impacts, digitalization in the waste sector could reduce global CO2 emissions by 15% by 2030 through technological solutions. Overall, this work suggests that digitalization in the waste sector contributes net-zero emission to a digital economy, while transitioning to a sustainable world as its social impacts.
Collapse
Affiliation(s)
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Skudai, Malaysia
| | - Xue Liang
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Petros Gikas
- Technical University of Crete, School of Chemical and Environmental Engineering, Chania, Greece
| | - Tutuk Djoko Kusworo
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Indonesia
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
11
|
Mueed A, Shibli S, Al-Quwaie DA, Ashkan MF, Alharbi M, Alanazi H, Binothman N, Aljadani M, Majrashi KA, Huwaikem M, Abourehab MAS, Korma SA, El-Saadony MT. Extraction, characterization of polyphenols from certain medicinal plants and evaluation of their antioxidant, antitumor, antidiabetic, antimicrobial properties, and potential use in human nutrition. Front Nutr 2023; 10:1125106. [PMID: 37415912 PMCID: PMC10320526 DOI: 10.3389/fnut.2023.1125106] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Dietary medicinal plants are among the most sought-after topics in alternative medicine today due to their preventive and healing properties against many diseases. Aim This study aimed to extract and determine the polyphenols from indigenous plants extracts, i.e., Mentha longifolia, M. arvensis, Tinospora cordifolia, Cymbopogon citratus, Foeniculum vulgare, Cassia absus, Camellia sinensis, Trachyspermum ammi, C. sinensis and M. arvensis, then evaluate the antioxidant, cytotoxicity, and antimicrobial properties, besides enzyme inhibition of isolated polyphenols. Methods The antioxidant activity was evaluated by DPPH, Superoxide radical, Hydroxyl radical (OH.), and Nitric oxide (NO.) scavenging activity; the antidiabetic activity was evaluated by enzymatic methods, and anticancer activity using MTT assay, while the antibacterial activity. Results The results showed that tested medicinal plants' polyphenolic extracts (MPPE) exhibited the most significant antioxidant activity in DPPH, hydroxyl, nitric oxide, and superoxide radical scavenging methods because of the considerable amounts of total polyphenol and flavonoid contents. UHPLC profile showed twenty-five polyphenol complexes in eight medicinal plant extracts, categorized into phenolic acids, flavonoids, and alkaloids. The main polyphenol was 3-Feroylquinic acid (1,302 mg/L), also found in M. longifolia, C. absus, and C. sinensis, has a higher phenolic content, i.e., rosmarinic acid, vanillic acid, chlorogenic acid, p-coumaric acid, ferulic acid, gallic acid, catechin, luteolin, 7-O-neohesperideside, quercetin 3,7-O-glucoside, hesperidin, rutin, quercetin, and caffeine in the range of (560-780 mg/L). At the same time, other compounds are of medium content (99-312 mg/L). The phenolics in C. sinensis were 20-116% more abundant than those in M. longifolia, C. absus, and other medicinal plants. While T. cordifolia is rich in alkaloids, T. ammi has a lower content. The MTT assay against Caco-2 cells showed that polyphenolic extracts of T. ammi and C. citratus had maximum cytotoxicity. While M. arvensis, C. sinensis, and F. vulgare extracts showed significant enzyme inhibition activity, C. sinensis showed minor inhibition activity against α-amylase. Furthermore, F. vulgare and C. sinensis polyphenolic extracts showed considerable antibacterial activity against S. aureus, B. cereus, E. coli, and S. enterica. Discussion The principal component analysis demonstrated clear separation among medicinal plants' extracts based on their functional properties. These findings prove the therapeutic effectiveness of indigenous plants and highlight their importance as natural reserves of phytogenic compounds with untapped potential that needs to be discovered through advanced analytical methods.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Department of Food Technology, Institute of Food and Nutrition, Arid Agriculture University, Rawalpindi, Pakistan
| | - Sahar Shibli
- Food Science Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Diana A Al-Quwaie
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mada F Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mona Alharbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Humidah Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Mashael Huwaikem
- Cinical Nutrition Department, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Kurniawan TA, Othman MHD, Liang X, Goh HH, Gikas P, Chong KK, Chew KW. Challenges and opportunities for biochar to promote circular economy and carbon neutrality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117429. [PMID: 36773474 DOI: 10.1016/j.jenvman.2023.117429] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Biochar, derived from unused biomass, is widely considered for its potential to deal with climate change problems. Global interest in biochar is attributed to its ability to sequester carbon in soil and to remediate aquatic environment from water pollution. As soil conditioner and/or adsorbent, biochar offers opportunity through a circular economy (CE) paradigm. While energy transition continues, progress toward low-emissions materials accelerates their advance towards net-zero emissions. However, none of existing works addresses CE-based biochar management to achieve carbon neutrality. To reflect its novelty, this work provides a critical overview of challenges and opportunities for biochar to promote CE and carbon neutrality. This article also offers seminal perspectives about strengthening biomass management through CE and resource recovery paradigms, while exploring how the unused biomass can promote net zero emissions in its applications. By consolidating scattered knowledge in the body of literature into one place, this work uncovers new research directions to close the loops by implementing the circularity of biomass resources in various fields. It is conclusive from a literature survey of 113 articles (2003-2023) that biomass conversion into biochar can promote net zero emissions and CE in the framework of the UN Sustainable Development Goals (SDGs). Depending on their physico-chemical properties, biochar can become a suitable feedstock for CE. Biochar application as soil enrichment offsets 12% of CO2 emissions by land use annually. Adding biochar to soil can improve its health and agricultural productivity, while minimizing about 1/8 of CO2 emissions. Biochar can also sequester CO2 in the long-term and prevent the release of carbon back into the atmosphere after its decomposition. This practice could sequester 2.5 gigatons (Gt) of CO2 annually. With the global biochar market reaching USD 368.85 million by 2028, this work facilitates biochar with its versatile characteristics to promote carbon neutrality and CE applications.
Collapse
Affiliation(s)
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor Bahru, Malaysia
| | - Xue Liang
- School of Electrical Engineering, Guangxi University, Nanning, 530004, China
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, China
| | - Petros Gikas
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, 73100, Greece
| | - Kok-Keong Chong
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
13
|
Emokpaire SO, Wang N, Liu J, Zhu C, Wang X, Li J, Zhou Y. Effect of Ru on Deformation Mechanism and Microstructure Evolution of Single-Crystal Superalloys under Medium-Temperature and High-Stress Creep. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2732. [PMID: 37049026 PMCID: PMC10096174 DOI: 10.3390/ma16072732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
In this work, the effect of the Ru element on the γ'-phase evolution and deformation mechanism in the fourth-generation Ni-based single-crystal superalloy was investigated. Results show that the Ru element alters the distribution coefficient of other elements in the alloy to produce reverse partitioning behavior, which leads to a difference in microstructure between 0Ru and 3Ru. The addition of Ru triggered the incubation period before the beginning of the primary creep stage, which depends on the creep temperature and stress during creep deformation. TEM results revealed that Ru addition inhibits the slip system {111}<112> at medium-temperature (760-1050 °C) and high-stress (270-810 MPa) creep, which brings a considerably low creep rate and high creep life to the Ru-containing alloy.
Collapse
Affiliation(s)
- Stephen Okhiai Emokpaire
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Nan Wang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
- The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110016, China
| | - Jide Liu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
| | - Chongwei Zhu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
| | - Xinguang Wang
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
| | - Jinguo Li
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
| | - Yizhou Zhou
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (S.O.E.); (N.W.); (C.Z.); (X.W.); (J.L.); (Y.Z.)
| |
Collapse
|
14
|
Yu Q, Zou J, Yu C, Peng G, Fan G, Wang L, Chen S, Lu L, Wang Z. Nitrogen Doped Porous Biochar/β-CD-MOFs Heterostructures: Bi-Functional Material for Highly Sensitive Electrochemical Detection and Removal of Acetaminophen. Molecules 2023; 28:2437. [PMID: 36985408 PMCID: PMC10054116 DOI: 10.3390/molecules28062437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Acetaminophen (AC) is one of the most common over-the-counter drugs, and its pollutant in groundwater has attracted more attention due to its serious risk to human health. Currently, the research on AC is mainly focused on its detection, but few are concerned about its removal. In this work, for the first time, nitrogen-doped Soulangeana sepals derived biochar/β-cyclodextrin-Metal-organic frameworks (N-SC/β-CD-MOFs) composite was proposed for the simultaneous efficient removal and detection of AC. N-SC/β-CD-MOFs combined the properties of host-guest recognition of β-CD-MOFs and porous structure, high porosity, and large surface area of N-SC. Their synergies endowed N-SC/β-CD-MOFs with a high adsorption capacity toward AC, which was up to 66.43 mg/g. The adsorption type of AC on the surface of N-SC/β-CD-MOFs conformed to the Langmuir adsorption model, and the study of the adsorption mechanism showed that AC adsorption on N-SC was mainly achieved through hydrogen bonding. In addition, the high conductivity, large specific surface area and abundant active sites of N-SC/β-CD-MOFs were of great significance to the high-performance detection of AC. Accordingly, the sensor prepared with N-SC/β-CD-MOFs presented a wide linear range (1.0-30.0 μM) and a low limit of detection of 0.3 nM (S/N = 3). These excellent performances demonstrate that N-SC/β-CD-MOFs could act as an efficient dual-functional material for the detection and removal of AC.
Collapse
Affiliation(s)
- Qi Yu
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jin Zou
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chenxiao Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guanwei Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guorong Fan
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Linyu Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shangxing Chen
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zongde Wang
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
15
|
Remediation technologies for contaminated groundwater due to arsenic (As), mercury (Hg), and/or fluoride (F): A critical review and way forward to contribute to carbon neutrality. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
16
|
Comparative Evaluation of Various Extraction Techniques for Secondary Metabolites from Bombax ceiba L. Flowering Plants along with In Vitro Anti-Diabetic Performance. Bioengineering (Basel) 2022; 9:bioengineering9100486. [PMID: 36290454 PMCID: PMC9598353 DOI: 10.3390/bioengineering9100486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Bombax ceiba L. (Family: Malvaceae) was rightly called the “silent doctor” in the past as every part of it had medicinal value. For centuries, humans have used this plant according to the traditional medicinal systems of China, Ayurveda, and tribal communities. Recently, with an emerging interest in herbals, attention has been paid to scientifically validating medicinal claims for the treatment of diabetes using secondary metabolites of B. ceiba L. flowers. In the present study, specific secondary metabolites from the flowers of B. ceiba L. were isolated in good yield using the solvent extraction methodology, and their in vitro anti-diabetic efficacy was examined. Extraction efficiency of each solvent for secondary metabolites was found in following order: water > ethanol> methanol > chloroform > petroleum ether. Quantitative analysis of secondary metabolites showed 120.33 ± 2.33 mg/gm polyphenols, 60.77 ± 1.02 mg/g flavonoids, 60.26 ± 1.20 mg/g glycosaponins, 0.167 ± 0.02 mg/g polysaccharides for water extract; 91.00 ± 1.00 mg/g polyphenols, 9.22 ± 1.02 mg/g flavonoids, 43.90 ± 0.30 mg/g glycosaponins, 0.090 ± 0.03 mg/g poly saccharides for ethanol extract; 52.00 ± 2.64 mg/g polyphenols, 35.22 ± 0.38 mg/g flavonoids, 72.26 ± 1.05 mg/g glycosaponins, 0.147 ± 0.01 mg/g polysaccharides for methanol extract; 11.33 ± 0.58 mg/g polyphenols, 23.66 ± 1.76 mg/g flavonoids, 32.8 ± 0.75 mg/g glycosaponins, 0.013 ± 0.02 mg/g polysaccharides for chloroform extract; and 3.33 ± 1.53 mg/g polyphenols, 1.89 ± 1.39 mg/g flavonoids, 21.67 ± 1.24 mg/g glycosaponins, 0.005 ± 0.01 mg/g polysaccharides for petroleum ether extract. Glucose uptake by yeast cells increased 70.38 ± 2.17% by water extract.
Collapse
|