1
|
Yan K, Liu X, Liu J, He C, Li J, Bai Q. Octadecyl-fibrous mesoporous silica nanospheres coated 96-blade thin-film microextraction for high-throughput analysis of phthalic acid esters in food and migration from food packages. J Chromatogr A 2024; 1716:464636. [PMID: 38219624 DOI: 10.1016/j.chroma.2024.464636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
A high-throughput sample pre-treatment method combined with high-performance liquid chromatography (HPLC) was developed to analyze phthalates (PAEs) in food and food contact package samples. Thin film microextraction (TFME) in 96-blade format was used to pre-treat 96 samples simultaneously. Octadecyl groups functionalized fibrous mesoporous silica nanospheres, namely C18-FMSNs, were synthesized and used as TFME coating material. The coating was fabricated by spraying a slurry of C18-FMSNs and polyacrylontrile (PAN) mixture with a commercial portable spraypen. The prepared C18-FMSNs/PAN coatings exhibited good reproducibility, repeatability and reusability. The optimized TFME conditions for PAEs consisted of extraction at pH 4.0 for 50 min, and desorption by methanol/acetonitrile (25/75, V/V) for 40 min. The pretreatment time for each sample was approximately 1.3 min. This TFME-HPLC method showed good linearity for eight PAEs within the concentration range of 0.5-1000 ng mL-1, with the coefficients higher than 0.9972. The limits of detection and quantification were 0.096-0.26 ng mL-1 and 0.32-0.86 ng mL-1, respectively. The intra-day and inter-day RSD % were below 6.6 % and 8.4 %, respectively, indicating good precision. The PAEs analysis in real samples showed that dibutyl phthalate (DBP) of 2.3 ± 0.3 ng mL-1 and di-(2-ethylhexyl) phthalate (DEHP) of 5.5 ± 0.8 ng mL-1 in boxed milk, dimethyl phthalate (DMP) of 12.6 ± 0.8 ng mL-1, DBP of 3.2 ± 0.4 ng mL-1and DEHP of 14.3 ± 0.7 ng mL-1 in the simulated water migration of plastic box, as well as DMP of 19.0 ± 0.6 ng mL-1, DBP of 25.6 ± 0.9 ng mL-1 and DEHP of 49.5 ± 2.8 ng mL-1 in the simulated ethanol migration of plastic box were determined, respectively. In addition, the detection of PAEs in all the real samples showed good recovery ranging from 85.6 to 110 % and lower RSDs % (<7.2 %).
Collapse
Affiliation(s)
- Kaiqi Yan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Xiangwei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Jiawei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China.
| | - Chong He
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an 710048, PR China
| | - Jian Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
2
|
Baneshi M, Tonney-Gagne J, Halilu F, Pilavangan K, Sabu Abraham B, Prosser A, Kanchanadevi Marimuthu N, Kaliaperumal R, Britten AJ, Mkandawire M. Unpacking Phthalates from Obscurity in the Environment. Molecules 2023; 29:106. [PMID: 38202689 PMCID: PMC10780137 DOI: 10.3390/molecules29010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Phthalates (PAEs) are a group of synthetic esters of phthalic acid compounds mostly used as plasticizers in plastic materials but are widely applied in most industries and products. As plasticizers in plastic materials, they are not chemically bound to the polymeric matrix and easily leach out. Logically, PAEs should be prevalent in the environment, but their prevalence, transport, fate, and effects have been largely unknown until recently. This has been attributed, inter alia, to a lack of standardized analytical procedures for identifying them in complex matrices. Nevertheless, current advancements in analytical techniques facilitate the understanding of PAEs in the environment. It is now known that they can potentially impact ecological and human health adversely, leading to their categorization as endocrine-disrupting chemicals, carcinogenic, and liver- and kidney-failure-causing agents, which has landed them among contaminants of emerging concern (CECs). Thus, this review article reports and discusses the developments and advancements in PAEs' standard analytical methods, facilitating their emergence from obscurity. It further explores the opportunities, challenges, and limits of their advancements.
Collapse
Affiliation(s)
- Marzieh Baneshi
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Jamey Tonney-Gagne
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Fatima Halilu
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Kavya Pilavangan
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Ben Sabu Abraham
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
- Engineering Co-op Intern, Dalhousie University, 1334 Barrington Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - Ava Prosser
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Nikaran Kanchanadevi Marimuthu
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
- MITACS Globalink Intern, Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore 14, Tamil Nadu 641 014, India
| | - Rajendran Kaliaperumal
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Allen J. Britten
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Martin Mkandawire
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| |
Collapse
|