1
|
Vargas-Torres V, Becerra D, Boric MP, Egaña JT. Towards chlorocytes for therapeutic intravascular photosynthesis. Appl Microbiol Biotechnol 2024; 108:489. [PMID: 39417888 PMCID: PMC11486813 DOI: 10.1007/s00253-024-13285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 10/19/2024]
Abstract
Aerobic metabolism relies on external oxygen production through photosynthesis and its subsequent transport into each cell of the body via the cardiorespiratory system. This mechanism has successfully evolved over millions of years, enabling animals to inhabit most environments on Earth. However, the insufficient oxygen supply leads to several clinical problems, ranging from non-healing wounds to tumor resistance to therapy. Given that photosynthetic microorganisms are capable of producing oxygen and removing carbon dioxide from the environment, over the last decade, several groups worldwide have proposed their potential use as an alternative tissue oxygenation approach. While most studies have demonstrated safety and efficacy after local tissue administration, recent studies have also suggested that systemic administration could trigger intravascular photosynthesis. If successful, the development of a new generation of circulating cells, known as chlorocytes, may partially replace the role of erythrocytes in gas exchange within the body, without relying on external supply and vascular flow. This work reviews the existing literature on local and systemic administration of photosynthetic microorganisms, highlighting the main challenges in the field and potential solutions to unleash the enormous potential clinical impact of chlorocytes and intravascular photosynthesis. KEY POINTS: • Circulating photosynthetic microorganisms could deliver oxygen to tissues • Microalgae and cyanobacteria have shown safety and efficacy for oxygen delivery • Several key challenges need to be addressed for the clinical success of chlorocytes.
Collapse
Affiliation(s)
- Valentina Vargas-Torres
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Becerra
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio P Boric
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Faculties of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Canini D, Ceschi E, Perozeni F. Toward the Exploitation of Sustainable Green Factory: Biotechnology Use of Nannochloropsis spp. BIOLOGY 2024; 13:292. [PMID: 38785776 PMCID: PMC11117969 DOI: 10.3390/biology13050292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Securing food, energy, and raw materials for a growing population is one of the most significant challenges of our century. Algae play a central role as an alternative to plants. Wastewater and flue gas can secure nutrients and CO2 for carbon fixation. Unfortunately, algae domestication is necessary to enhance biomass production and reduce cultivation costs. Nannochloropsis spp. have increased in popularity among microalgae due to their ability to accumulate high amounts of lipids, including PUFAs. Recently, the interest in the use of Nannochloropsis spp. as a green bio-factory for producing high-value products increased proportionally to the advances of synthetic biology and genetic tools in these species. In this review, we summarized the state of the art of current nuclear genetic manipulation techniques and a few examples of their application. The industrial use of Nannochloropsis spp. has not been feasible yet, but genetic tools can finally lead to exploiting this full-of-potential microalga.
Collapse
Affiliation(s)
| | | | - Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (D.C.); (E.C.)
| |
Collapse
|
3
|
Dubey KK, Kumar A, Baldia A, Rajput D, Kateriya S, Singh R, Nikita, Tandon R, Mishra YK. Biomanufacturing of glycosylated antibodies: Challenges, solutions, and future prospects. Biotechnol Adv 2023; 69:108267. [PMID: 37813174 DOI: 10.1016/j.biotechadv.2023.108267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Traditionally, recombinant protein production has been done in several expression hosts of bacteria, fungi, and majorly CHO (Chinese Hamster Ovary) cells; few have high production costs and are susceptible to harmful toxin contamination. Green algae have the potential to produce recombinant proteins in a more sustainable manner. Microalgal diversity leads to offer excellent opportunities to produce glycosylated antibodies. An antibody with humanized glycans plays a crucial role in cellular communication that works to regulate cells and molecules, to control disease, and to stimulate immunity. Therefore, it becomes necessary to understand the role of abiotic factors (light, temperature, pH, etc.) in the production of bioactive molecules and molecular mechanisms of product synthesis from microalgae which would lead to harnessing the potential of algal bio-refinery. However, the potential of microalgae as the source of bio-refinery has been less explored. In the present review, omics approaches for microalgal engineering, methods of humanized glycoproteins production focusing majorly on N-glycosylation pathways, light-based regulation of glycosylation machinery, and production of antibodies with humanized glycans in microalgae with a major emphasis on modulation of post-translation machinery of microalgae which might play a role in better understanding of microalgal potential as a source for antibody production along with future perspectives.
Collapse
Affiliation(s)
- Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Kumar
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajani Singh
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark.
| |
Collapse
|
4
|
Carrera-Pacheco SE, Hankamer B, Oey M. Environmental and nuclear influences on microalgal chloroplast gene expression. TRENDS IN PLANT SCIENCE 2023; 28:955-967. [PMID: 37080835 DOI: 10.1016/j.tplants.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal chloroplasts, such as those of the model organism Chlamydomonas reinhardtii, are emerging as a new platform to produce recombinant proteins, including industrial enzymes, diagnostics, as well as animal and human therapeutics. Improving transgene expression and final recombinant protein yields, at laboratory and industrial scales, require optimization of both environmental and cellular factors. Most studies on C. reinhardtii have focused on optimization of cellular factors. Here, we review the regulatory influences of environmental factors, including light (cycle time, intensity, and quality), carbon source (CO2 and organic), and temperature. In particular, we summarize their influence via the redox state, cis-elements, and trans-factors on biomass and recombinant protein production to support the advancement of emerging large-scale light-driven biotechnology applications.
Collapse
Affiliation(s)
- Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Ben Hankamer
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| | - Melanie Oey
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| |
Collapse
|
5
|
Cutolo EA, Mandalà G, Dall’Osto L, Bassi R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022; 10:743. [PMID: 35456794 PMCID: PMC9025058 DOI: 10.3390/microorganisms10040743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Photosynthetic microbes are gaining increasing attention as heterologous hosts for the light-driven, low-cost production of high-value recombinant proteins. Recent advances in the manipulation of unicellular algal genomes offer the opportunity to establish engineered strains as safe and viable alternatives to conventional heterotrophic expression systems, including for their use in the feed, food, and biopharmaceutical industries. Due to the relatively small size of their genomes, algal chloroplasts are excellent targets for synthetic biology approaches, and are convenient subcellular sites for the compartmentalized accumulation and storage of products. Different classes of recombinant proteins, including enzymes and peptides with therapeutical applications, have been successfully expressed in the plastid of the model organism Chlamydomonas reinhardtii, and of a few other species, highlighting the emerging potential of transplastomic algal biotechnology. In this review, we provide a unified view on the state-of-the-art tools that are available to introduce protein-encoding transgenes in microalgal plastids, and discuss the main (bio)technological bottlenecks that still need to be addressed to develop robust and sustainable green cell biofactories.
Collapse
Affiliation(s)
| | | | | | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.A.C.); (G.M.); (L.D.)
| |
Collapse
|
6
|
Engineering Chlamydomonas reinhardtii for Expression of Functionally Active Human Interferon-α. Mol Biotechnol 2018; 61:134-144. [DOI: 10.1007/s12033-018-0143-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
|
8
|
Ravi A, Guo S, Rasala B, Tran M, Mayfield S, Nikolov ZL. Separation Options for Phosphorylated Osteopontin from Transgenic Microalgae Chlamydomonas reinhardtii. Int J Mol Sci 2018; 19:ijms19020585. [PMID: 29462927 PMCID: PMC5855807 DOI: 10.3390/ijms19020585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Correct folding and post-translational modifications are vital for therapeutic proteins to elicit their biological functions. Osteopontin (OPN), a bone regenerative protein present in a range of mammalian cells, is an acidic phosphoprotein with multiple potential phosphorylation sites. In this study, the ability of unicellular microalgae, Chlamydomonas reinhardtii, to produce phosphorylated recombinant OPN in its chloroplast is investigated. This study further explores the impact of phosphorylation and expression from a “plant-like” algae on separation of OPN. Chromatography resins ceramic hydroxyapatite (CHT) and Gallium-immobilized metal affinity chromatography (Ga-IMAC) were assessed for their binding specificity to phosphoproteins. Non-phosphorylated recombinant OPN expressed in E. coli was used to compare the specificity of interaction of the resins to phosphorylated OPN. We observed that CHT binds OPN by multimodal interactions and was better able to distinguish phosphorylated proteins in the presence of 250 mM NaCl. Ga-IMAC interaction with OPN was not selective to phosphorylation, irrespective of salt, as the resin bound OPN from both algal and bacterial sources. Anion exchange chromatography proved an efficient capture method to partially separate major phosphorylated host cell protein impurities such as Rubisco from OPN.
Collapse
Affiliation(s)
- Ayswarya Ravi
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Shengchun Guo
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Beth Rasala
- Triton Algae Innovations, San Diego, CA 92121, USA.
| | - Miller Tran
- Triton Algae Innovations, San Diego, CA 92121, USA.
| | - Stephen Mayfield
- California Center of Algae Biotechnology, University of California San Diego, San Diego, CA 92093, USA.
| | - Zivko L Nikolov
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Jha D, Jain V, Sharma B, Kant A, Garlapati VK. Microalgae-based Pharmaceuticals and Nutraceuticals: An Emerging Field with Immense Market Potential. CHEMBIOENG REVIEWS 2017. [DOI: 10.1002/cben.201600023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Durga Jha
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Vishakha Jain
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Brinda Sharma
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Anil Kant
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Vijay Kumar Garlapati
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| |
Collapse
|
10
|
Munjal N, Kulkarni S, Quinones K, Tran M, Mayfield SP, Nikolov ZL. Evaluation of pretreatment methods for primary recovery and capture of an antibody fragment (αCD22scFv) from Chlamydomonas reinhardtii lysates. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|