1
|
Zhou S, Huang L, Wang G, Wang W, Zhao R, Sun X, Wang D. A review of the development in shale oil and gas wastewater desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162376. [PMID: 36828060 DOI: 10.1016/j.scitotenv.2023.162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The development of the shale oil and gas extraction industry has heightened concerns about shale oil and gas wastewater (SOGW). This review comprehensively summarizes, analyzes, and evaluates multiple issues in SOGW desalination. The detailed analysis of SOGW water quality and various disposal strategies with different water quality standards reveals the water quality characteristics and disposal status of SOGW, clarifying the necessity of desalination for the rational management of SOGW. Subsequently, potential and implemented technologies for SOGW desalination are reviewed, mainly including membrane-based, thermal-based, and adsorption-based desalination technologies, as well as bioelectrochemical desalination systems, and the research progress of these technologies in desalinating SOGW are highlighted. In addition, various pretreatment methods for SOGW desalination are comprehensively reviewed, and the synergistic effects on SOGW desalination that can be achieved by combining different desalination technologies are summarized. Renewable energy sources and waste heat are also discussed, which can be used to replace traditional fossil energy to drive SOGW desalination and reduce the negative impact of shale oil and gas exploitation on the environment. Moreover, real project cases for SOGW desalination are presented, and the full-scale or pilot-scale on-site treatment devices for SOGW desalination are summarized. In order to compare different desalination processes clearly, operational parameters and performance data of varying desalination processes, including feed salinity, water flux, salt removal rate, water recovery, energy consumption, and cost, are collected and analyzed, and the applicability of different desalination technologies in desalinating SOGW is qualitatively evaluated. Finally, the recovery of valuable inorganic resources in SOGW is discussed, which is a meaningful research direction for SOGW desalination. At present, the development of SOGW desalination has not reached a satisfactory level, and investing enough energy in SOGW desalination in the future is still necessary to achieve the optimal management of SOGW.
Collapse
Affiliation(s)
- Simin Zhou
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guangzhi Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Rui Zhao
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xiyu Sun
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Dongdong Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
2
|
Al-Obaidi MA, Zubo RHA, Rashid FL, Dakkama HJ, Abd-Alhameed R, Mujtaba IM. Evaluation of Solar Energy Powered Seawater Desalination Processes: A Review. ENERGIES 2022; 15:6562. [DOI: 10.3390/en15186562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Solar energy, amongst all renewable energies, has attracted inexhaustible attention all over the world as a supplier of sustainable energy. The energy requirement of major seawater desalination processes such as multistage flash (MSF), multi-effect distillation (MED) and reverse osmosis (RO) are fulfilled by burning fossil fuels, which impact the environment significantly due to the emission of greenhouse gases. The integration of solar energy systems into seawater desalination processes is an attractive and alternative solution to fossil fuels. This study aims to (i) assess the progress of solar energy systems including concentrated solar power (CSP) and photovoltaic (PV) to power both thermal and membrane seawater desalination processes including MSF, MED, and RO and (ii) evaluate the economic considerations and associated challenges with recommendations for further improvements. Thus, several studies on a different combination of seawater desalination processes of solar energy systems are reviewed and analysed concerning specific energy consumption and freshwater production cost. It is observed that although solar energy systems have the potential of reducing carbon footprint significantly, the cost of water production still favours the use of fossil fuels. Further research and development on solar energy systems are required to make their use in desalination economically viable. Alternatively, the carbon tax on the use of fossil fuels may persuade desalination industries to adopt renewable energy such as solar.
Collapse
|
3
|
Al‐Douri A, Alsuhaibani AS, Moore M, Nielsen RB, El‐Baz AA, El‐Halwagi MM. Greenhouse gases emissions in liquified natural gas as a marine fuel: Life cycle analysis and reduction potential. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ahmad Al‐Douri
- The Artie McFerrin Department of Chemical Engineering Texas A&M University College Station Texas USA
| | | | | | | | - Amro A. El‐Baz
- Department of Environmental Engineering, Faculty of Engineering Zagazig University Sharkeya Egypt
| | - Mahmoud M. El‐Halwagi
- The Artie McFerrin Department of Chemical Engineering Texas A&M University College Station Texas USA
- Gas and Fuels Research Center Texas A&M Engineering Experiment Station College Station Texas USA
| |
Collapse
|
4
|
Optimal Water Management in Agro-Industrial Districts: An Energy Hub’s Case Study in the Southeast of Spain. Processes (Basel) 2021. [DOI: 10.3390/pr9020333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this work, the optimal management of the water grid belonging to a pilot agro-industrial district, based on greenhouse cultivation, is analyzed. Different water supply plants are considered in the district, some of them using renewable energies as power sources, i.e., a solar thermal desalination plant and a nanofiltration facility powered up by a photovoltaic field. Moreover, the trade with the water public utility network is also taken into account. As demanding agents, a greenhouse and an office building are contemplated. Due to the different water necessities, demand profiles, and the heterogeneous nature of the different plants considered as supplier agents, the management of the whole plant is not trivial. In this way, an algorithm based on the energy hubs approach, which takes into account economic terms and the optimal use of the available resources in its formulation, is proposed for the pilot district with a cropping area of 616 m2. Simulation results are provided in order to evidence the benefits of the proposed technique in two cases: Case 1 considers the flexible operation of the desalination plant, whereas in Case 2 the working conditions are forced to equal the plant’s maximum capacity (Case 2). A flexible operation results in a weekly improvement of 4.68% in profit, an optimized use of the desalination plant, and a reduction of the consumption of water from the public grid by 58.1%.
Collapse
|
5
|
Oke D, Mukherjee R, Sengupta D, Majozi T, El-Halwagi M. Hybrid Regeneration Network for Flowback Water Management. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Doris Oke
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| | - Rajib Mukherjee
- Gas and Fuels Research Center, Texas A&M Engineering Experiment Station, College Station, Texas 77843, United States
- Department of Chemical Engineering, University of Texas Permian Basin, Odessa, Texas 79762, United States
| | - Debalina Sengupta
- Gas and Fuels Research Center, Texas A&M Engineering Experiment Station, College Station, Texas 77843, United States
| | - Thokozani Majozi
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2000, South Africa
| | - Mahmoud El-Halwagi
- Gas and Fuels Research Center, Texas A&M Engineering Experiment Station, College Station, Texas 77843, United States
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
6
|
Baaqeel H, Abdelhady F, Alghamdi AS, El-Halwagi MM. Optimal design and scheduling of a solar-assisted domestic desalination systems. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2019.106605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
A Residential Load Scheduling with the Integration of On-Site PV and Energy Storage Systems in Micro-Grid. SUSTAINABILITY 2019. [DOI: 10.3390/su12010184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The smart grid (SG) has emerged as a key enabling technology facilitating the integration of variable energy resources with the objective of load management and reduced carbon-dioxide (CO 2 ) emissions. However, dynamic load consumption trends and inherent intermittent nature of renewable generations may cause uncertainty in active resource management. Eventually, these uncertainties pose serious challenges to the energy management system. To address these challenges, this work establishes an efficient load scheduling scheme by jointly considering an on-site photo-voltaic (PV) system and an energy storage system (ESS). An optimum PV-site matching technique was used to optimally select the highest capacity and lowest cost PV module. Furthermore, the best-fit of PV array in regard with load is anticipated using least square method (LSM). Initially, the mathematical models of PV energy generation, consumption and ESS are presented along with load categorization through Zero and Finite shift methods. Then, the final problem is formulated as a multiobjective optimization problem which is solved by using the proposed Dijkstra algorithm (DA). The proposed algorithm quantifies day-ahead electricity market consumption cost, used energy mixes, curtailed load, and grid imbalances. However, to further analyse and compare the performance of proposed model, the results of the proposed algorithm are compared with the genetic algorithm (GA), binary particle swarm optimization (BPSO), and optimal pattern recognition algorithm (OPRA), respectively. Simulation results show that DA achieved 51.72% cost reduction when grid and renewable sources are used. Similarly, DA outperforms other algorithms in terms of maximum peak to average ratio (PAR) reduction, which is 10.22%.
Collapse
|
8
|
A Stochastic Optimization Approach to the Design of Shale Gas/Oil Wastewater Treatment Systems with Multiple Energy Sources under Uncertainty. SUSTAINABILITY 2019. [DOI: 10.3390/su11184865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The production of shale gas and oil is associated with the generation of substantial amounts of wastewater. With the growing emphasis on sustainable development, the energy sector has been intensifying efforts to manage water resources while diversifying the energy portfolio used in treating wastewater to include fossil and renewable energy. The nexus of water and energy introduces complexity in the optimization of the water management systems. Furthermore, the uncertainty in the data for energy (e.g., solar intensity) and cost (e.g., price fluctuation) introduce additional complexities. The objective of this work is to develop a novel framework for the optimizing wastewater treatment and water-management systems in shale gas production while incorporating fossil and solar energy and accounting for uncertainties. Solar energy is utilized via collection, recovery, storage, and dispatch of heat. Heat integration with an adjacent industrial facility is considered. Additionally, electric power production is intended to supply a reverse osmosis (RO) plant and the local electric grid. The optimization problem is formulated as a multi-scenario mixed integer non-linear programming (MINLP) problem that is a deterministic equivalent of a two-stage stochastic programming model for handling uncertainty in operational conditions through a finite set of scenarios. The results show the capability of the system to address water-energy nexus problems in shale gas production based on the system’s economic and environmental merits. A case study for Eagle Ford Basin in Texas is solved by enabling effective water treatment and energy management strategies to attain the maximum annual profit of the entire system while achieving minimum environmental impact.
Collapse
|
9
|
Special Issue: Modeling and Simulation of Energy Systems. Processes (Basel) 2019. [DOI: 10.3390/pr7080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This editorial provides a brief overview of the Special Issue “Modeling and Simulation of Energy Systems.” This Special Issue contains 21 research articles describing some of the latest advances in energy systems engineering that use modeling and simulation as a key part of the problem-solving methodology. Although the specific computer tools and software chosen for the job are quite variable, the overall objectives are the same—mathematical models of energy systems are used to describe real phenomena and answer important questions that, due to the hugeness or complexity of the systems of interest, cannot be answered experimentally on the lab bench. The topics explored relate to the conceptual process design of new energy systems and energy networks, the design and operation of controllers for improved energy systems performance or safety, and finding optimal operating strategies for complex systems given highly variable and dynamic environments. Application areas include electric power generation, natural gas liquefaction or transportation, energy conversion and management, energy storage, refinery applications, heat and refrigeration cycles, carbon dioxide capture, and many others. The case studies discussed within this issue mostly range from the large industrial (chemical plant) scale to the regional/global supply chain scale.
Collapse
|
10
|
Neutrosophic Optimization Model and Computational Algorithm for Optimal Shale Gas Water Management under Uncertainty. Symmetry (Basel) 2019. [DOI: 10.3390/sym11040544] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Shale gas energy is the most prominent and dominating source of power across the globe. The processes for the extraction of shale gas from shale rocks are very complex. In this study, a multiobjective optimization framework is presented for an overall water management system that includes the allocation of freshwater for hydraulic fracturing and optimal management of the resulting wastewater with different techniques. The generated wastewater from the shale fracking process contains highly toxic chemicals. The optimal control of a massive amount of contaminated water is quite a challenging task. Therefore, an on-site treatment plant, underground disposal facility, and treatment plant with expansion capacity were designed to overcome environmental issues. A multiobjective trade-off between socio-economic and environmental concerns was established under a set of conflicting constraints. A solution method—the neutrosophic goal programming approach—is suggested, inspired by independent, neutral/indeterminacy thoughts of the decision-maker(s). A theoretical computational study is presented to show the validity and applicability of the proposed multiobjective shale gas water management optimization model and solution procedure. The obtained results and conclusions, along with the significant contributions, are discussed in the context of shale gas supply chain planning policies over different time horizons.
Collapse
|
11
|
Guo Z, Sun Y, Pan SY, Chiang PC. Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1282. [PMID: 30974807 PMCID: PMC6479948 DOI: 10.3390/ijerph16071282] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022]
Abstract
Wastewater treatment can consume a large amount of energy to meet discharge standards. However, wastewater also contains resources which could be recovered for secondary uses under proper treatment. Hence, the goal of this paper is to review the available green energy and biomass energy that can be utilized in wastewater treatment plants. Comprehensive elucidation of energy-efficient technologies for wastewater treatment plants are revealed. For these energy-efficient technologies, this review provides an introduction and current application status of these technologies as well as key performance indicators for the integration of green energy and energy-efficient technologies. There are several assessment perspectives summarized in the evaluation of the integration of green energy and energy-efficient technologies in wastewater treatment plants. To overcome the challenges in wastewater treatment plants, the Internet of Things (IoT) and green chemistry technologies for the water and energy nexus are proposed. The findings of this review are highly beneficial for the development of green energy and energy-efficient wastewater treatment plants. Future research should investigate the integration of green infrastructure and ecologically advanced treatment technologies to explore the potential benefits and advantages.
Collapse
Affiliation(s)
- Ziyang Guo
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei City 10673, Taiwan.
- Carbon Cycle Research Center, National Taiwan University, Taipei City 10672, Taiwan.
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211800, China.
| | - Shu-Yuan Pan
- Department of Bioenvironmental System Engineering, National Taiwan University, Taipei City 10617, Taiwan.
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Pen-Chi Chiang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei City 10673, Taiwan.
- Carbon Cycle Research Center, National Taiwan University, Taipei City 10672, Taiwan.
| |
Collapse
|
12
|
Cogeneration Process Technical Viability for an Apartment Building: Case Study in Mexico. Processes (Basel) 2019. [DOI: 10.3390/pr7020093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objective of this paper is to evaluate and to simulate the cogeneration process applied to an apartment building in the Polanco area (Mexico). Considering the building’s electric, thermal demand and consumption data, the cogeneration process model was simulated using Thermoflow© software (Thermoflow Inc., Jacksonville, FL, USA), in order to cover 1.1 MW of electric demand and to supply the thermal needs of hot water, heating, air conditioning and heating pool. As a result of analyzing various schemes of cogeneration, the most efficient scheme consists of the use of a gas turbine (Siemens model SGT-100-1S), achieving a cycle with efficiency of 84.4% and a heat rate of 14,901 kJ/kWh. The economic results of this evaluation show that it is possible to implement the cogeneration in the building with a natural gas price below US$0.014/kWh. The use of financing schemes makes the economic results more attractive. Furthermore, the percentage of the turbine load effect on the turbine load net power, cogeneration efficiency, chimney flue gas temperature, CO2 emission, net heat ratio, turbine fuel flow and after burner fuel flow was also studied.
Collapse
|
13
|
Allen RC, Allaire D, El-Halwagi MM. Capacity Planning for Modular and Transportable Infrastructure for Shale Gas Production and Processing. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04255] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. Cory Allen
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Douglas Allaire
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Mahmoud M. El-Halwagi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Integration of Process Modeling, Design, and Optimization with an Experimental Study of a Solar-Driven Humidification and Dehumidification Desalination System. Processes (Basel) 2018. [DOI: 10.3390/pr6090163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Solar energy is becoming a promising source of heat and power for electrical generation and desalination plants. In this work, an integrated study of modeling, optimization, and experimental work is undertaken for a parabolic trough concentrator combined with a humidification and dehumidification desalination unit. The objective is to study the design performance and economic feasibility of a solar-driven desalination system. The design involves the circulation of a closed loop of synthetic blend motor oil in the concentrators and the desalination unit heat input section. The air circulation in the humidification and dehumidification unit operates in a closed loop, where the circulating water runs during the daytime and requires only makeup feed water to maintain the humidifier water level. Energy losses are reduced by minimizing the waste of treated streams. The process is environmentally friendly, since no significant chemical treatment is required. Design, construction, and operation are performed, and the system is analyzed at different circulating oil and air flow rates to obtain the optimum operating conditions. A case study in Saudi Arabia is carried out. The study reveals unit capability of producing 24.31 kg/day at a circulating air rate of 0.0631 kg/s and oil circulation rate of 0.0983 kg/s. The tradeoff between productivity, gain output ratio, and production cost revealed a unit cost of 12.54 US$/m3. The impact of the circulating water temperature has been tracked and shown to positively influence the process productivity. At a high productivity rate, the humidifier efficiency was found to be 69.1%, and the thermal efficiency was determined to be 82.94%. The efficiency of the parabolic trough collectors improved with the closed loop oil circulation, and the highest performance was achieved from noon until 14:00 p.m.
Collapse
|
15
|
|
16
|
A Differentiable Model for Optimizing Hybridization of Industrial Process Heat Systems with Concentrating Solar Thermal Power. Processes (Basel) 2018. [DOI: 10.3390/pr6070076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
|