1
|
Reddy JV, Raudenbush K, Papoutsakis ET, Ierapetritou M. Cell-culture process optimization via model-based predictions of metabolism and protein glycosylation. Biotechnol Adv 2023; 67:108179. [PMID: 37257729 DOI: 10.1016/j.biotechadv.2023.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
In order to meet the rising demand for biologics and become competitive on the developing biosimilar market, there is a need for process intensification of biomanufacturing processes. Process development of biologics has historically relied on extensive experimentation to develop and optimize biopharmaceutical manufacturing. Experimentation to optimize media formulations, feeding schedules, bioreactor operations and bioreactor scale up is expensive, labor intensive and time consuming. Mathematical modeling frameworks have the potential to enable process intensification while reducing the experimental burden. This review focuses on mathematical modeling of cellular metabolism and N-linked glycosylation as applied to upstream manufacturing of biologics. We review developments in the field of modeling cellular metabolism of mammalian cells using kinetic and stoichiometric modeling frameworks along with their applications to simulate, optimize and improve mechanistic understanding of the process. Interest in modeling N-linked glycosylation has led to the creation of various types of parametric and non-parametric models. Most published studies on mammalian cell metabolism have performed experiments in shake flasks where the pH and dissolved oxygen cannot be controlled. Efforts to understand and model the effect of bioreactor-specific parameters such as pH, dissolved oxygen, temperature, and bioreactor heterogeneity are critically reviewed. Most modeling efforts have focused on the Chinese Hamster Ovary (CHO) cells, which are most commonly used to produce monoclonal antibodies (mAbs). However, these modeling approaches can be generalized and applied to any mammalian cell-based manufacturing platform. Current and potential future applications of these models for Vero cell-based vaccine manufacturing, CAR-T cell therapies, and viral vector manufacturing are also discussed. We offer specific recommendations for improving the applicability of these models to industrially relevant processes.
Collapse
Affiliation(s)
- Jayanth Venkatarama Reddy
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA
| | - Katherine Raudenbush
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA; Delaware Biotechnology Institute, Department of Biological Sciences, University of Delaware, USA.
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA.
| |
Collapse
|
2
|
Nikita S, Mishra S, Gupta K, Runkana V, Gomes J, Rathore AS. Advances in bioreactor control for production of biotherapeutic products. Biotechnol Bioeng 2023; 120:1189-1214. [PMID: 36760086 DOI: 10.1002/bit.28346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Advanced control strategies are well established in chemical, pharmaceutical, and food processing industries. Over the past decade, the application of these strategies is being explored for control of bioreactors for manufacturing of biotherapeutics. Most of the industrial bioreactor control strategies apply classical control techniques, with the control system designed for the facility at hand. However, with the recent progress in sensors, machinery, and industrial internet of things, and advancements in deeper understanding of the biological processes, coupled with the requirement of flexible production, the need to develop a robust and advanced process control system that can ease process intensification has emerged. This has further fuelled the development of advanced monitoring approaches, modeling techniques, process analytical technologies, and soft sensors. It is seen that proper application of these concepts can significantly improve bioreactor process performance, productivity, and reproducibility. This review is on the recent advancements in bioreactor control and its related aspects along with the associated challenges. This study also offers an insight into the future prospects for development of control strategies that can be designed for industrial-scale production of biotherapeutic products.
Collapse
Affiliation(s)
- Saxena Nikita
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Somesh Mishra
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Keshari Gupta
- TCS Research, Tata Consultancy Services Limited, Pune, India
| | | | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, DBT Centre of Excellence for Biopharmaceutical Technology, Indian Institute of Technology, Hauz Khas, Delhi, India
| |
Collapse
|
3
|
Schwarz H, Mäkinen ME, Castan A, Chotteau V. Monitoring of Amino Acids and Antibody N-Glycosylation in High Cell Density Perfusion Culture based on Raman Spectroscopy. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
MacDonald MA, Nöbel M, Roche Recinos D, Martínez VS, Schulz BL, Howard CB, Baker K, Shave E, Lee YY, Marcellin E, Mahler S, Nielsen LK, Munro T. Perfusion culture of Chinese Hamster Ovary cells for bioprocessing applications. Crit Rev Biotechnol 2021; 42:1099-1115. [PMID: 34844499 DOI: 10.1080/07388551.2021.1998821] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Much of the biopharmaceutical industry's success over the past 30 years has relied on products derived from Chinese Hamster Ovary (CHO) cell lines. During this time, improvements in mammalian cell cultures have come from cell line development and process optimization suited for large-scale fed-batch processes. Originally developed for high cell densities and sensitive products, perfusion processes have a long history. Driven by high volumetric titers and a small footprint, perfusion-based bioprocess research has regained an interest from academia and industry. The recent pandemic has further highlighted the need for such intensified biomanufacturing options. In this review, we outline the technical history of research in this field as it applies to biologics production in CHO cells. We demonstrate a number of emerging trends in the literature and corroborate these with underlying drivers in the commercial space. From these trends, we speculate that the future of perfusion bioprocesses is bright and that the fields of media optimization, continuous processing, and cell line engineering hold the greatest potential. Aligning in its continuous setup with the demands for Industry 4.0, perfusion biomanufacturing is likely to be a hot topic in the years to come.
Collapse
Affiliation(s)
- Michael A MacDonald
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Matthias Nöbel
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Dinora Roche Recinos
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,CSL Limited, Parkville, Melbourne, Australia
| | - Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Benjamin L Schulz
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Christopher B Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Kym Baker
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Evan Shave
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | | | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Lars Keld Nielsen
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, St. Lucia, Brisbane, Australia.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Trent Munro
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,National Biologics Facility, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
5
|
Fung Shek C, Kotidis P, Betenbaugh M. Mechanistic and data-driven modeling of protein glycosylation. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Zhang L, Wang M, Castan A, Hjalmarsson H, Chotteau V. Probabilistic model by Bayesian network for the prediction of antibody glycosylation in perfusion and fed-batch cell cultures. Biotechnol Bioeng 2021; 118:3447-3459. [PMID: 33788254 DOI: 10.1002/bit.27769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023]
Abstract
Glycosylation is a critical quality attribute of therapeutic monoclonal antibodies (mAbs). The glycan pattern can have a large impact on the immunological functions, serum half-life and stability. The medium components and cultivation parameters are known to potentially influence the glycosylation profile. Mathematical modelling provides a strategy for rational design and control of the upstream bioprocess. However, the kinetic models usually contain a very large number of unknown parameters, which limit their practical applications. In this article, we consider the metabolic network of N-linked glycosylation as a Bayesian network (BN) and calculate the fluxes of the glycosylation process as joint probability using the culture parameters as inputs. The modelling approach is validated with data of different Chinese hamster ovary cell cultures in pseudo perfusion, perfusion, and fed batch cultures, all showing very good predictive capacities. In cases where a large number of cultivation parameters is available, it is shown here that principal components analysis can efficiently be employed for a dimension reduction of the inputs compared to Pearson correlation analysis and feature importance by decision tree. The present study demonstrates that BN model can be a powerful tool in upstream process and medium development for glycoprotein productions.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, KTH Royal Institute of Technology, Stockholm, Sweden
| | - MingLiang Wang
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, KTH Royal Institute of Technology, Stockholm, Sweden.,Division of Decision and Control System, School of Electrical Engineering and Computer Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | - Håkan Hjalmarsson
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, KTH Royal Institute of Technology, Stockholm, Sweden.,Division of Decision and Control System, School of Electrical Engineering and Computer Science, KTH-Royal Institute of Technology, Stockholm, Sweden.,Digital Futures - KTH Royal Institute of Technology, Stockholm, Sweden
| | - Veronique Chotteau
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden.,AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, KTH Royal Institute of Technology, Stockholm, Sweden.,Digital Futures - KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
7
|
Zhang L, Schwarz H, Wang M, Castan A, Hjalmarsson H, Chotteau V. Control of IgG glycosylation in CHO cell perfusion cultures by GReBA mathematical model supported by a novel targeted feed, TAFE. Metab Eng 2020; 65:135-145. [PMID: 33161144 DOI: 10.1016/j.ymben.2020.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
The N-linked glycosylation pattern is an important quality attribute of therapeutic glycoproteins. It has been reported by our group and by others that different carbon sources, such as glucose, mannose and galactose, can differently impact the glycosylation profile of glycoproteins in mammalian cell culture. Acting on the sugar feeding is thus an attractive strategy to tune the glycan pattern. However, in case of feeding of more than one carbon source simultaneously, the cells give priority to the one with the highest uptake rate, which limits the usage of this tuning, e.g. the cells favor consuming glucose in comparison to galactose. We present here a new feeding strategy (named 'TAFE' for targeted feeding) for perfusion culture to adjust the concentrations of fed sugars influencing the glycosylation. The strategy consists in setting the sugar feeding such that the cells are forced to consume these substrates at a target cell specific consumption rate decided by the operator and taking into account the cell specific perfusion rate (CSPR). This strategy is applied in perfusion cultures of Chinese hamster ovary (CHO) cells, illustrated by ten different regimes of sugar feeding, including glucose, galactose and mannose. Applying the TAFE strategy, different glycan profiles were obtained using the different feeding regimes. Furthermore, we successfully forced the cells to consume higher proportions of non-glucose sugars, which have lower transport rates than glucose in presence of this latter, in a controlled way. In previous work, a mathematical model named Glycan Residues Balance Analysis (GReBA) was developed to model the glycosylation profile based on the fed carbon sources. The present data were applied to the GReBA to design a feeding regime targeting a given glycosylation profile. The ability of the model to achieve this objective was confirmed by a multi-round of leave-one-out cross-validation (LOOCV), leading to the conclusion that the GReBA model can be used to design the feeding regime of a perfusion cell culture to obtain a desired glycosylation profile.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Sweden; AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, KTH, Sweden
| | - Hubert Schwarz
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Sweden; AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, KTH, Sweden
| | - Mingliang Wang
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, KTH, Sweden; Division of Decision and Control System, School of Electrical Engineering and Computer Science, KTH-Royal Institute of Technology, Sweden
| | | | - Håkan Hjalmarsson
- AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, KTH, Sweden; Division of Decision and Control System, School of Electrical Engineering and Computer Science, KTH-Royal Institute of Technology, Sweden
| | - Veronique Chotteau
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Sweden; AdBIOPRO, VINNOVA Competence Centre for Advanced Bioproduction by Continuous Processing, KTH, Sweden.
| |
Collapse
|
8
|
|
9
|
Special Issue on Feature Papers for Celebrating the Fifth Anniversary of the Founding of Processes. Processes (Basel) 2019. [DOI: 10.3390/pr7010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Special Issue “Feature Papers for Celebrating the Fifth Anniversary of the Founding of Processes” represents a landmark for this open access journal covering chemical, biological, materials, pharmaceutical, and environmental systems as well as general computational methods for process and systems engineering. [...]
Collapse
|