1
|
Shan C, Xia T, Liu J, Wang Y, Bai P, Xu L, Li Z, Zhao J, Bao X. The impacts of nicotinamide and inositol on the available cells and product performance of industrial baker's yeasts. BIORESOUR BIOPROCESS 2023; 10:41. [PMID: 38647809 PMCID: PMC10991249 DOI: 10.1186/s40643-023-00661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/25/2023] [Indexed: 04/25/2024] Open
Abstract
A suitable nutrient supply, especially of vitamins, is very significant for the deep display of the inherent genetic properties of microorganisms. Here, using the chemically defined minimal medium (MM) for yeast, nicotinamide and inositol were confirmed to be more beneficial for the performance of two industrial baker's yeasts, a conventional and a high-sugar-tolerant strain. Increasing nicotinamide or inositol to proper levels could enhance the both strains on cell growth and activity and product performance, including trehalose accumulation and leavening performance. The activity of key enzymes (PCK, TPS) and the content of intermediate metabolites (G6P, UDPG) in the trehalose synthesis pathway were promoted by a moderate supply of nicotinamide and inositol. That were also proved that an appropriate amount of niacinamide promoted the transcription of longevity-related genes (PNC1, SIR2), and the proper concentration of inositol altered the phospholipid composition in cells, namely, phosphatidylinositol and phosphatidyl choline. Furthermore, the cell growth and the leavening performance of the both strains were promoted after adjusting inositol to choline to the proper ratio, resulting directly in content changes of phosphatidylinositol and phosphatidyl choline in the cells. While the two strains responded to the different proper ratio of inositol to choline probably due to their specific physiological characteristics. Such beneficial effects of increased nicotinamide levels were confirmed in natural media, molasses and corn starch hydrolyzed sugar media. Meanwhile, such adjustment of inositol to choline ratio could lessen the inhibition of excess inositol on cell growth of the two tested strains in corn starch hydrolyzed sugar media. However, in molasse, such phenomenon was not observed probably since there was higher Ca2+ in it. The results indicated that the effects of nutrient factors, such as vitamins, on cell growth and other properties found out from the simple chemically defined minimal medium were an effective measure to use in improving the recipe of natural media at least for baker's yeast.
Collapse
Affiliation(s)
- Chengpeng Shan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Tianqing Xia
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Jiao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
- Shandong Shouguang Juneng Golden Corn Co., Ltd, Shouguang, 262711, Shandong, People's Republic of China.
| | - Ying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Penggang Bai
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Lili Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Zailu Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| | - Jianzhi Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China.
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, People's Republic of China
| |
Collapse
|
2
|
Cho CW, Pham TPT, Zhao Y, Stolte S, Yun YS. Review of the toxic effects of ionic liquids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147309. [PMID: 33975102 DOI: 10.1016/j.scitotenv.2021.147309] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 05/11/2023]
Abstract
Interest in ionic liquids (ILs), called green or designer solvents, has been increasing because of their excellent properties such as thermal stability and low vapor pressure; thus, they can replace harmful organic chemicals and help several industrial fields e.g., energy-storage materials production and biomaterial pretreatment. However, the claim that ILs are green solvents should be carefully considered from an environmental perspective. ILs, given their minimal vapor pressure, may not directly cause atmospheric pollution. However, they have the potential to cause adverse effects if leaked into the environment, for instance if they are spilled due to human mistakes or technical errors. To estimate the risks of ILs, numerous ILs have had their toxicity assessed toward several micro- and macro-organisms over the past few decades. Since the toxic effects of ILs depend on the method of estimating toxicity, it is necessary to briefly summarize and comprehensively discuss the biological effects of ILs according to their structure and toxicity testing levels. This can help simplify our understanding of the toxicity of ILs. Therefore, in this review, we discuss the key findings of toxicological information of ILs, collect some toxicity data of ILs to different species, and explain the influence of IL structure on their toxic properties. In the discussion, we estimated two different sensitivity values of toxicity testing levels depending on the experiment condition, which are theoretical magnitudes of the inherent sensitivity of toxicity testing levels in various conditions and their changes in biological response according to the change in IL structure. Finally, some perspectives, future research directions, and limitations to toxicological research of ILs, presented so far, are discussed.
Collapse
Affiliation(s)
- Chul-Woong Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea.
| | - Thi Phuong Thuy Pham
- Faculty of Biotechnology, HoChiMihn University of Food Industry, Ho Chi Minh City, Viet Nam
| | - Yufeng Zhao
- College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Stefan Stolte
- Technische Universität Dresden, Faculty of Environmental Sciences, Department of Hydrosciences, Institute of Water Chemistry, Bergstraße 66, 01062 Dresden, Germany
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Chonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk 561-756, South Korea.
| |
Collapse
|
3
|
Sindhu A, Kumar S, Mondal D, Bahadur I, Venkatesu P. Protein packaging in ionic liquid mixtures: an ecofriendly approach towards the improved stability of β-lactoglobulin in cholinium-based mixed ionic liquids. Phys Chem Chem Phys 2020; 22:14811-14821. [DOI: 10.1039/d0cp02151b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present work demonstrates a pioneering approach for the packaging of β-LG with improved stability in the presence of aqueous solutions containing cholinium-based ionic liquid mixtures.
Collapse
Affiliation(s)
| | - Sumit Kumar
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | - Dibyendu Mondal
- Centre for Nano & Material Science
- JAIN (deemed to be University)
- Jain Global Campus
- Bangalore-562112
- India
| | - Indra Bahadur
- Department of Chemistry, School of Physical and Chemical Sciences, Material Science Innovation & Modelling (MaSIM) Focus Area, Faculty of Natural and Agricultural Sciences
- North-West University (Mafikeng Campus)
- Private Bag X2046
- Mmabatho 2735
- South Africa
| | | |
Collapse
|