1
|
Yang DH, Ricci F, Nordstrom FL, Li N. Complex oiling-out behavior of procaine with stable and metastable liquid phases. Phys Chem Chem Phys 2024; 26:808-821. [PMID: 38095117 DOI: 10.1039/d3cp04622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
During the crystallization of a solute from solvent(s), spontaneous liquid-liquid phase separation (LLPS) might occur, under certain conditions. This phenomenon, colloquially referred to as "oiling-out" in the pharmaceutical industry, often leads to undesired outcomes, including undesired particle properties, encrustation, ineffective impurity rejection, and excessively long process time. Therefore, it is critical to understand the thermodynamic driving force and phase boundaries of this phenomenon, such that rational strategies can be developed to avoid oiling-out or minimize its negative impact. In this study, we systematically evaluated the oiling-out behavior of procaine, a low melting point drug, in the solvent systems heptane, and ethanol-heptane as a function of temperature and solvent composition. In the procaine-heptane binary system, we observed a region where the LLPS is metastable with respect to crystallization, which is most commonly observed in the crystallization of modern active pharmaceutical ingredients (APIs); however, we also identified a region of the phase diagram where the LLPS is stable with respect to crystallization, and therefore will persist indefinitely. In the procaine-ethanol-heptane ternary system we identified five different regions, including a homogeneous liquid (L) region, two solid-liquid (SLI and SLII) regions, a liquid-liquid (LILII) region, and a solid-liquid-liquid (SLILII) region. The binary and ternary phase diagrams were also predicted using a state-of-the-art thermodynamic model: the SAFT-γ-Mie equation of state, and the results were compared with experimental data. Our findings highlight the complexity of oiling-out behavior. This work also represents a combined modeling and experimental platform to identify phase boundaries that will enable rational selection of strategies to crystallize active pharmaceutical ingredients with oiling-out risks.
Collapse
Affiliation(s)
- Da Hye Yang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Francesco Ricci
- Material & Analytical Sciences, Boehringer-Ingelheim, Ridgefield, CT 06877, USA
| | - Fredrik L Nordstrom
- Material & Analytical Sciences, Boehringer-Ingelheim, Ridgefield, CT 06877, USA
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
- Institute of Material Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Coliaie P, Prajapati A, Ali R, Boukerche M, Korde A, Kelkar MS, Nere NK, Singh MR. In-line measurement of liquid-liquid phase separation boundaries using a turbidity-sensor-integrated continuous-flow microfluidic device. LAB ON A CHIP 2022; 22:2299-2306. [PMID: 35451445 DOI: 10.1039/d1lc01112j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid-liquid phase separation (LLPS), also known as oiling-out, is the appearance of the second liquid phase preceding the crystallization. LLPS is an undesirable phenomenon that can occur during the crystallization of active pharmaceutical ingredients (APIs), proteins, and polymers. It is typically avoided during crystallization due to its detrimental impacts on crystalline products due to lowered crystallization rate, the inclusion of impurities, and alteration in particle morphology and size distribution. In situ monitoring of phase separation enables investigating LLPS and identifying the phase separation boundaries. Various process analytical technologies (PATs) have been implemented to determine the LLPS boundaries prior to crystallization to prevent oiling out of compounds. The LLPS measurements using PATs can be time-consuming, expensive, and challenging. Here, we have implemented a fully integrated continuous-flow microfluidic device with a turbidity sensor to quickly and accurately evaluate the LLPS boundaries for a β-alanine, water, and IPA mixture. The turbidity-sensor-integrated continuous-flow microfluidic device is also placed under an optical microscope to visually track and record the appearance and disappearance of oil droplets. Streams of an aqueous solution of β-alanine, pure solvent (water), and pure antisolvent (IPA or ethanol) are pumped into the continuous-flow microfluidic device at various flow rates to obtain the compositions at which the solution becomes turbid. The onset of turbidity is measured using a custom-designed, in-line turbidity sensor. The LLPS boundaries can be estimated using the turbidity-sensor-integrated microfluidic device in less than 30 min, which will significantly improve and enhance the workflow of the pharmaceutical drug (or crystalline material) development process.
Collapse
Affiliation(s)
- Paria Coliaie
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, IL 60607, USA.
| | - Aditya Prajapati
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, IL 60607, USA.
| | - Rabia Ali
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, IL 60607, USA.
| | - Moussa Boukerche
- Center of Excellence for Isolation & Separation Technologies (CoExIST), Process R&D, AbbVie Inc., North Chicago, IL 60064, USA
| | - Akshay Korde
- Center of Excellence for Isolation & Separation Technologies (CoExIST), Process R&D, AbbVie Inc., North Chicago, IL 60064, USA
| | - Manish S Kelkar
- Center of Excellence for Isolation & Separation Technologies (CoExIST), Process R&D, AbbVie Inc., North Chicago, IL 60064, USA
| | - Nandkishor K Nere
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, IL 60607, USA.
- Center of Excellence for Isolation & Separation Technologies (CoExIST), Process R&D, AbbVie Inc., North Chicago, IL 60064, USA
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, IL 60607, USA.
| |
Collapse
|
3
|
Shen L, Dang M. Recent Advance of Melt Crystallization, Towards Process Intensification and Techniques Development. CrystEngComm 2022. [DOI: 10.1039/d2ce00022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Melt crystallization has been considered as a green separation technique and widely applied in industry and manufacture due to several attractive features, including no need for solvent, achieving specific product...
Collapse
|