1
|
Walczak J, Dzido A, Jankowska H, Krawczyk P, Zubrowska-Sudol M. Effects of various rotational speeds of hydrodynamic disintegrator on carbon, nutrient, and energy recovery from sewage sludge. WATER RESEARCH 2023; 243:120365. [PMID: 37517153 DOI: 10.1016/j.watres.2023.120365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Until recently, sewage sludge produced in wastewater treatment processes was considered problematic waste. It currently constitutes a valuable substrate for raw materials and energy recovery. One of the methods of intensifying resource recovery from sludge is its pretreatment by means of disintegration methods. This study presents the CFD modelling and experimentally investigates the use of a hydrodynamic cavitation rotor operated with various rotational speeds (1500, 2500, and 300 rpm) for the recovery of organic compounds, nutrients, and energy. Rheological properties of raw sludge, a non-Newtonian fluid, were determined and used in the modelling calculations. Cavitation zones were observed for 2500 rpm and 3000 rpm, although a stronger cavitation effect occurred for a rotational speed of 3000 rpm. A rotational speed of 1500 rpm was too low to generate a pressure drop below 1705 Pa, and no cavitation was recorded. An increase in rotational speed from 1500 rpm to 3000 rpm for each analysed energy density caused an increase in SCOD and nitrogen concentration. Moreover, it was determined that at low energy densities (<105 kJ/L), mechanical tearing was the dominant factor responsible for carbon recovery, and at its higher values (≥105 kJ/L), the cavitation phenomenon became increasingly important. Rotation speed also had a significant effect on methane yield (YCH4). An increase in YCH4 by 6.2% was recorded only for disintegrated sludge at a rotational speed of 1500 rpm in reference to untreated sludge. Disintegration conducted at higher rotational speeds led to a decrease in YCH4 (-0.7% for 2500 rpm and -7.9% for 3000 rpm).
Collapse
Affiliation(s)
- Justyna Walczak
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Nowowiejska 20, 00-653 Warsaw, Poland.
| | - Aleksandra Dzido
- Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
| | - Honorata Jankowska
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Nowowiejska 20, 00-653 Warsaw, Poland
| | - Piotr Krawczyk
- Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
| | - Monika Zubrowska-Sudol
- Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Nowowiejska 20, 00-653 Warsaw, Poland
| |
Collapse
|
3
|
Ekstrand EM, Björn A, Karlsson A, Schnürer A, Kanders L, Yekta SS, Karlsson M, Moestedt J. Identifying targets for increased biogas production through chemical and organic matter characterization of digestate from full-scale biogas plants: what remains and why? BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:16. [PMID: 35418216 PMCID: PMC8830174 DOI: 10.1186/s13068-022-02103-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/01/2022] [Indexed: 11/10/2022]
Abstract
Background This study examines the destiny of macromolecules in different full-scale biogas processes. From previous studies it is clear that the residual organic matter in outgoing digestates can have significant biogas potential, but the factors dictating the size and composition of this residual fraction and how they correlate with the residual methane potential (RMP) are not fully understood. The aim of this study was to generate additional knowledge of the composition of residual digestate fractions and to understand how they correlate with various operational and chemical parameters. The organic composition of both the substrates and digestates from nine biogas plants operating on food waste, sewage sludge, or agricultural waste was characterized and the residual organic fractions were linked to substrate type, trace metal content, ammonia concentration, operational parameters, RMP, and enzyme activity. Results Carbohydrates represented the largest fraction of the total VS (32–68%) in most substrates. However, in the digestates protein was instead the most abundant residual macromolecule in almost all plants (3–21 g/kg). The degradation efficiency of proteins generally lower (28–79%) compared to carbohydrates (67–94%) and fats (86–91%). High residual protein content was coupled to recalcitrant protein fractions and microbial biomass, either from the substrate or formed in the degradation process. Co-digesting sewage sludge with fat increased the protein degradation efficiency with 18%, possibly through a priming mechanism where addition of easily degradable substrates also triggers the degradation of more complex fractions. In this study, high residual methane production (> 140 L CH4/kg VS) was firstly coupled to operation at unstable process conditions caused mainly by ammonia inhibition (0.74 mg NH3-N/kg) and/or trace element deficiency and, secondly, to short hydraulic retention time (HRT) (55 days) relative to the slow digestion of agricultural waste and manure. Conclusions Operation at unstable conditions was one reason for the high residual macromolecule content and high RMP. The outgoing protein content was relatively high in all digesters and improving the degradation of proteins represents one important way to increase the VS reduction and methane production in biogas plants. Post-treatment or post-digestion of digestates, targeting microbial biomass or recalcitrant protein fractions, is a potential way to achieve increased protein degradation. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02103-3.
Collapse
Affiliation(s)
- Eva-Maria Ekstrand
- Department of Thematic Studies - Environmental Change, Linköping University, 58183, Linköping, Sweden.,Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Annika Björn
- Department of Thematic Studies - Environmental Change, Linköping University, 58183, Linköping, Sweden.,Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Anna Karlsson
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden.,Scandinavian Biogas Fuels AB, Holländargatan 21A, 111 60, Stockholm, Sweden
| | - Anna Schnürer
- Department of Thematic Studies - Environmental Change, Linköping University, 58183, Linköping, Sweden.,Biogas Research Center, Linköping University, 58183, Linköping, Sweden.,Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, 750 07, Uppsala, Sweden
| | - Linda Kanders
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden.,Purac AB, Box 1146, 221 05, Lund, Sweden
| | - Sepehr Shakeri Yekta
- Department of Thematic Studies - Environmental Change, Linköping University, 58183, Linköping, Sweden.,Biogas Research Center, Linköping University, 58183, Linköping, Sweden
| | - Martin Karlsson
- Biogas Research Center, Linköping University, 58183, Linköping, Sweden.,Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Jan Moestedt
- Department of Thematic Studies - Environmental Change, Linköping University, 58183, Linköping, Sweden. .,Biogas Research Center, Linköping University, 58183, Linköping, Sweden. .,Department of Biogas R&D, Tekniska verken i Linköping AB, Box 1500, 581 15, Linköping, Sweden.
| |
Collapse
|
4
|
Linking CFD and Kinetic Models in Anaerobic Digestion Using a Compartmental Model Approach. Processes (Basel) 2020. [DOI: 10.3390/pr8060703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Understanding mixing behavior and its impact on conversion processes is essential for the operational stability and conversion efficiency of anaerobic digestion (AD). Mathematical modelling is a powerful tool to achieve this. Direct linkage of Computational Fluid Dynamics (CFD) and the kinetic model is, however, computationally expensive, given the stiffness of the kinetic model. Therefore, this paper proposes a compartmental model (CM) approach, which is derived from a converged CFD solution to understand the performance of AD under non-ideal mixing conditions and with spatial variation of substrates, biomass, pH, and specific biogas and methane production. To quantify the effect of non-uniformity on the reactor performance, the CM implements the Anaerobic Digestion Model 1 (ADM1) in each compartment. It is demonstrated that the performance and spatial variation of the biochemical process in a CM are significantly different from a continuously stirred tank reactor (CSTR) assumption. Hence, the assumption of complete mixed conditions needs attention concerning the AD performance prediction and biochemical process non-uniformities.
Collapse
|
5
|
Influence of Enzyme Additives on the Rheological Properties of Digester Slurry and on Biomethane Yield. Bioengineering (Basel) 2020; 7:bioengineering7020051. [PMID: 32512722 PMCID: PMC7356200 DOI: 10.3390/bioengineering7020051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/02/2022] Open
Abstract
The use of enzyme additives in anaerobic digestion facilities has increased in recent years. According to the manufacturers, these additives should increase or accelerate the biogas yield and reduce the viscosity of the digester slurry. Such effects were confirmed under laboratory conditions. However, it has not yet been possible to quantify these effects in practice, partly because valid measurements on large-scale plants are expensive and challenging. In this research, a new enzyme product was tested under full-scale conditions. Two digesters were operated at identic process parameters—one digester was treated with an enzyme additive and a second digester was used as reference. A pipe viscometer was designed, constructed and calibrated and the rheological properties of the digester slurry were measured. Non-Newtonian flow behavior was modelled by using the Ostwald–de Baer law. Additionally, the specific biomethane yield of the feedstock was monitored to assess the influence of the enzyme additive on the substrate degradation efficiency. The viscosity measurements revealed a clear effect of the added enzyme product. The consistency factor K was significantly reduced after the enzyme application. There was no observable effect of enzyme application on the substrate degradation efficiency or specific biomethane yield.
Collapse
|