1
|
Ge X, Zhang J, He L, Yu N, Pan C, Chen Y. Integration of metabolomics and transcriptomics analyses reveals the mechanism of nano-selenium treated to activate phenylpropanoid metabolism and enhance the antioxidant activity of peach. J Food Sci 2023; 88:4529-4543. [PMID: 37872835 DOI: 10.1111/1750-3841.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023]
Abstract
Foliar spraying to improve the quality of fruits is a general approach nowadays. In this study, 10 ppm nano-selenium (nano-Se) diluted with distilled water was sprayed on peach leaves every 10 days for a total of 7 sprays during the fruit set period. And then their fruit quality was compared with that of control group. It was found that the firmness, soluble solid concentration, total phenol, and proanthocyanidin content of the peaches were raised after the nano-Se treatment. Moreover, the ascorbic acid glutathione loop (ASA-GSH loop) was fully activated in the nano-Se treated group, and the associated antioxidant capacity and enzyme activity were significantly increased. Metabolomics revealed that nano-Se could upregulate some metabolites, such as phenylalanine, naringenin, and pinocembrin, to fully activate the metabolism of phenylpropanoids. Further, based on transcriptomics, nano-Se treatment was found to affect fruit quality by regulating genes related to phenylpropanoid metabolism, such as arogenate/prephenate dehydratase (ADT), genes related to abscisic acid metabolism such as (+)-abscisic acid 8'-hydroxylase (CYP707A), and some transcription factors such as MYB. Based on the comprehensive analysis of physicochemical indicators, metabolomics, and transcriptomics, it was found that nano-Se improved fruit quality by activating phenylpropanoid metabolism and enhancing antioxidant capacity. This work provides insights into the mechanism of the effect of nano-Se fertilizer on peach fruit quality. PRACTICAL APPLICATION: The firmness and soluble solid concentration of peaches are higher after nano-Se treatment, which is more in line with people's demand for hard soluble peaches like "Yingzui." The antioxidant capacity, antioxidant substance content, and antioxidant enzyme activity of nano-Se-treated peaches are higher, with potential storage resistance and health effects on human body. The mechanism of nano-Se affecting peach quality was analyzed by metabolomics and transcriptomics, which is a reference and guide for the research and application of nano-Se.
Collapse
Affiliation(s)
- Xuliyang Ge
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
2
|
Monmai C, Kim JS, Chin JH, Lee S, Baek SH. Inhibitory Effects of Polyphenol- and Flavonoid-Enriched Rice Seed Extract on Melanogenesis in Melan-a Cells via MAPK Signaling-Mediated MITF Downregulation. Int J Mol Sci 2023; 24:11841. [PMID: 37511600 PMCID: PMC10380342 DOI: 10.3390/ijms241411841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Melanin production is an important process that prevents the host skin from harmful ultraviolet radiation; however, an overproduction of melanin results in skin diseases. In the present study, we determined the antioxidative and anti-melanogenic activities of polyphenol- and flavonoid-enriched rice seed extracts in melan-a cells. The polyphenol and flavonoid content of Hopum (HP) and Sebok (SB) rice seed extracts was measured. The antioxidant capacity was determined using the ABTS radical scavenging method. SB contained high amounts of polyphenols and flavonoids, which significantly increased antioxidative activity compared with HP. Various concentrations of these extracts were evaluated in a cytotoxicity using melan-a cells. At 100 µg/mL, there was no significant difference for all treatments compared with untreated cells. Therefore, 100 µg/mL was selected as a concentration for the further experiments. SB significantly suppressed the phosphorylation/activation of p-38 MAPK, increased the expression of phosphorylated ERK 1/2 and Akt, and downregulated the microphthalmia-associated transcription factor (MITF). This resulted in decreased levels of tyrosinase and tyrosinase-related protein-1 and -2. These results indicate the potential of polyphenol- and flavonoid-enriched rice seed as a treatment for hyperpigmentation.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - Jin-Suk Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - Joong Hyoun Chin
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - So-Hyeon Baek
- Department of Agricultural Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| |
Collapse
|
3
|
Johnson NAN, Ekumah JN, Ma Y, Akpabli-Tsigbe NDK, Adade SYSS, Manching X, Quaisie J, Kwaw E, Wang C. Optimization of fermentation parameters for the production of a novel selenium enriched mulberry (Morus nigra) wine. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
4
|
Sanna F, Piluzza G, Campesi G, Molinu MG, Re GA, Sulas L. Antioxidant Contents in a Mediterranean Population of Plantago lanceolata L. Exploited for Quarry Reclamation Interventions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060791. [PMID: 35336673 PMCID: PMC8950243 DOI: 10.3390/plants11060791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 05/14/2023]
Abstract
Plantago lanceolata L. (plantain) is an interesting multipurpose perennial species whose aerial parts are used in herbal medicine due to its precious phytochemicals and are palatable to animals. Moreover, peculiar traits such as drought tolerance, an extended growth season and a deep root system, make plantain a promising pioneer plant for quarry reclamation based on the use of native species. This study evaluated the effects of different environmental conditions and seasons on the accumulation of the bioactive compounds of its aerial organs. An autochthonous plantain population was grown in three locations in Sardinia (Italy). Leaves, peduncles and inflorescences were collected between October 2020 and July 2021. Phenolic contents and antioxidant capacity were determined. The analysis of the individual phenolic compounds was performed using liquid chromatography. In leaves, the content of total phenolics, antioxidant capacity and total flavonoids were significantly influenced by location and season. Total phenolic content ranged from 65 to 240 g gallic acid equivalent kg-1, whereas total flavonoids were from 16 to about 89 g catechin equivalent kg-1. Neochlorogenic, chlorogenic, cryptochlorogenic acids, verbascoside, diosmin and luteolin were identified in the methanolic extracts of leaves, peduncles and inflorescences. Verbascoside was the main antioxidant isolated from plantain extracts. Results evidenced an increasing accumulation pattern of phenolics from vegetative stage to flowering, followed by a decrement towards the seed ripening as well as site-specific differences with amounts of phenolics even 25% higher for same plantain accession.
Collapse
Affiliation(s)
- Federico Sanna
- National Research Council, Institute for the Animal Production System in Mediterranean Environment, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy; (F.S.); (G.C.); (G.A.R.); (L.S.)
| | - Giovanna Piluzza
- National Research Council, Institute for the Animal Production System in Mediterranean Environment, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy; (F.S.); (G.C.); (G.A.R.); (L.S.)
- Correspondence: ; Tel.: +39-079-2841608
| | - Giuseppe Campesi
- National Research Council, Institute for the Animal Production System in Mediterranean Environment, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy; (F.S.); (G.C.); (G.A.R.); (L.S.)
| | - Maria Giovanna Molinu
- National Research Council, Institute of Sciences of Food Production, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy;
| | - Giovanni Antonio Re
- National Research Council, Institute for the Animal Production System in Mediterranean Environment, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy; (F.S.); (G.C.); (G.A.R.); (L.S.)
| | - Leonardo Sulas
- National Research Council, Institute for the Animal Production System in Mediterranean Environment, Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy; (F.S.); (G.C.); (G.A.R.); (L.S.)
| |
Collapse
|
5
|
Redoy MRA, Rahman MA, Atikuzzaman M, Shuvo AAS, Hossain E, Khan MJ, Al-Mamun M. Dose titration of plantain herb (Plantago lanceolata L.) supplementation on growth performance, serum antioxidants status, liver enzymatic activity and meat quality in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1952114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. R. A. Redoy
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - M. A. Rahman
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - M. Atikuzzaman
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - A. A. S. Shuvo
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - E. Hossain
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - M. J. Khan
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - M. Al-Mamun
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
6
|
Abstract
AbstractIn this study, famous Zhejiang teas were evaluated as a well-advertised source of selenium. The 25 samples from provinces around China and Asia were purchased in Warsaw tea shops. The speciation analysis of selenium as well as the evaluation of catechin content in water tea infusions was performed using hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS/MS). It turned out that all of tested samples can be a great source of organic selenium species (no traces of inorganic selenium was found), however, Zhejiang teas did not differ much among others. Such a conclusion can also be drawn when comparing the antioxidant capacity of the tested samples, obtained with the application of four methods (Folin–Ciocalteu method, scavenging of the 2,2-diphenyl-1-picrylhydrazyl radical, hydroxyl radical scavenging and cupric reducing ability assay). What is more, no correlation was found between the selenium content and the antioxidant activity of studied teas. The results obtained for the six samples from Zhejiang Province were very varied, which shows that it is very difficult to interpret the results and compare them with the results of other authors.
Collapse
|
7
|
Tree Bark Phenols Regulate the Physiological and Biochemical Performance of Gladiolus Flowers. Processes (Basel) 2020. [DOI: 10.3390/pr8010071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The postharvest physiology of cut flowers is largely dependent on vase life, which is the maximum number of days before flower senescence. The use of tree bark extracts (major forest plant residues), as an eco-friendly and natural antioxidant preservative in holding solutions, is a novel tool for extending flower longevity. The morphological, physiological, biochemical, and genetic responses of Gladiolus grandiflorus cut spikes to Magnolia acuminata and Taxus cuspidata bark extracts as additives in holding solutions were investigated. G. grandiflorus subjected to bark extracts as well as catechin and protocatechuic acid (main phenols) displayed significant increased longevity (up to 18 days), an increased number of open florets, and increased floret fresh weight. Increases in the relative water content, leaf chlorophyll, carotenoids, soluble sugars, and protein content were observed in addition to a reduction in microbial growth in the cut spikes. Gas exchange parameters were higher in the bark extract treatments than in the controls. Higher antioxidant activities were detected and associated with increased superoxide dismutase and catalase enzyme activities and reduced H2O2 accumulation. The bark extract treatments associated with reduced expression of GgCyP1 (produces cysteine protease) and increased expression of both GgDAD1 (defends against apoptotic activity) and GgEXPA1 (regulates petal expansion). Several mechanisms were implicated in these effects, including maintenance of water content, enhanced management of reactive oxygen species (ROS), increased sugar and protein composition, and control of microbial growth. Thus, bark extracts and isolated phenols could be developed as an eco-friendly, non-toxic, and cost-effective natural preservative for cut gladiolus flowers.
Collapse
|