1
|
Bresolin BM, Liguori B, Gargiulo N, Campanile A, Piumetti M, Grifasi N, Tammaro O, Esposito S, Caputo D, Florio C. Application of zeolites for efficient tannery wastewater remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1073-1094. [PMID: 39731669 DOI: 10.1007/s11356-024-35821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Leather manufacturing is the process of converting raw animal hides or skins into finished leather. The complex industrial procedures result in a tanning effluent composed of chemical compounds with potentially hazardous impacts on humans and ecosystems. Among the traditional and efficient wastewater treatments, adsorption is an effective and well-known approach, able to manage a wide range of contaminants from wastewater. Among the plethora of adsorption substrates used on an industrial scale, zeolites have traditionally shown remarkable performances. Differently from other types of adsorbents, zeolites can also work as cation exchangers, which can remove cationic contaminants without influencing the anionic content of the effluent and (in specific cases) also when the removal process is endothermic. Zeolites are minerals naturally present in the environment, but they can be also easily synthesized and modified to enhance their water remediation features. However, the removal efficiency of zeolites is strictly dependent on the type of target contaminant because its uptake capacity is linked to its chemical and physical characteristics, especially on the surface interlayer. This review intends to present a general description of the tannery process to understand the origin and characterization of tanning wastewater. The core of the study aims to approach the most significant studies about zeolite applications in the removal of tanning contaminants. Drawbacks of the reviewed literature are further discussed, and some potential future research content is eventually revealed by identifying the issues that need further investigation.
Collapse
Affiliation(s)
- Bianca Maria Bresolin
- Dipartimento Di Ingegneria Meccanica E Industriale, Università Degli Studi Di Brescia, Brescia, Italy.
- Stazione Sperimentale Per L'industria Delle Pelli E Delle Materie Concianti S.R.L., 80143, Napoli, Italy.
| | - Barbara Liguori
- Dipartimento Di Ingegneria Chimica, Università Degli Studi Di Napoli Federico II, Dei Materiali E Della Produzione Industriale, 80125, Napoli, Italy
| | - Nicola Gargiulo
- Dipartimento Di Ingegneria Chimica, Università Degli Studi Di Napoli Federico II, Dei Materiali E Della Produzione Industriale, 80125, Napoli, Italy
| | - Assunta Campanile
- Dipartimento Di Ingegneria Chimica, Università Degli Studi Di Napoli Federico II, Dei Materiali E Della Produzione Industriale, 80125, Napoli, Italy
| | - Marco Piumetti
- Dipartimento Di Scienza Applicata E Tecnologia (DISAT), Politecnico Di Torino, 10129, Torino, Italy
| | - Nadia Grifasi
- Dipartimento Di Scienza Applicata E Tecnologia (DISAT), Politecnico Di Torino, 10129, Torino, Italy
| | - Olimpia Tammaro
- Dipartimento Di Scienza Applicata E Tecnologia (DISAT), Politecnico Di Torino, 10129, Torino, Italy
| | - Serena Esposito
- Dipartimento Di Scienza Applicata E Tecnologia (DISAT), Politecnico Di Torino, 10129, Torino, Italy
| | - Domenico Caputo
- Dipartimento Di Ingegneria Chimica, Università Degli Studi Di Napoli Federico II, Dei Materiali E Della Produzione Industriale, 80125, Napoli, Italy
| | - Claudia Florio
- Stazione Sperimentale Per L'industria Delle Pelli E Delle Materie Concianti S.R.L., 80143, Napoli, Italy
| |
Collapse
|
2
|
Blachnio M, Kusmierek K, Swiatkowski A, Derylo-Marczewska A. Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents. Molecules 2023; 28:5404. [PMID: 37513275 PMCID: PMC10385827 DOI: 10.3390/molecules28145404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing consumption of phenoxyacetic acid-derived herbicides is becoming a major public health and environmental concern, posing a serious challenge to existing conventional water treatment systems. Among the various physicochemical and biological purification processes, adsorption is considered one of the most efficient and popular techniques due to its high removal efficiency, ease of operation, and cost effectiveness. This review article provides extensive literature information on the adsorption of phenoxyacetic herbicides by various adsorbents. The purpose of this article is to organize the scattered information on the currently used adsorbents for herbicide removal from the water, such as activated carbons, carbon and silica adsorbents, metal oxides, and numerous natural and industrial waste materials known as low-cost adsorbents. The adsorption capacity of these adsorbents was compared for the two most popular phenoxyacetic herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA). The application of various kinetic models and adsorption isotherms in describing the removal of these herbicides by the adsorbents was also presented and discussed. At the beginning of this review paper, the most important information on phenoxyacetic herbicides has been collected, including their classification, physicochemical properties, and occurrence in the environment.
Collapse
Affiliation(s)
- Magdalena Blachnio
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Krzysztof Kusmierek
- Institute of Chemistry, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warszawa, Poland
| | - Andrzej Swiatkowski
- Institute of Chemistry, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warszawa, Poland
| | - Anna Derylo-Marczewska
- Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
3
|
Adsorption of gallic acid by tailor-made magnetic metal-ceramic nanocomposites. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Marzeddu S, Décima MA, Camilli L, Bracciale MP, Genova V, Paglia L, Marra F, Damizia M, Stoller M, Chiavola A, Boni MR. Physical-Chemical Characterization of Different Carbon-Based Sorbents for Environmental Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207162. [PMID: 36295233 PMCID: PMC9607634 DOI: 10.3390/ma15207162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 05/14/2023]
Abstract
Biochar has been used in various applications, e.g., as a soil conditioner and in remediation of contaminated water, wastewater, and gaseous emissions. In the latter application, biochar was shown to be a suitable alternative to activated carbon, providing high treatment efficiency. Since biochar is a by-product of waste pyrolysis, its use allows for compliance with circular economics. Thus, this research aims to obtain a detailed characterization of three carbonaceous materials: an activated carbon (CARBOSORB NC 1240®) and two biochars (RE-CHAR® and AMBIOTON®). In particular, the objective of this work is to compare the properties of three carbonaceous materials to evaluate whether the application of the two biochars is the same as that of activated carbon. The characterization included, among others, particle size distribution, elemental analysis, pH, scanning electron microscope, pore volume, specific surface area, and ionic exchange capacity. The results showed that CARBOSORB NC 1240® presented a higher specific surface (1126.64 m2/g) than AMBIOTON® (256.23 m2/g) and RE-CHAR® (280.25 m2/g). Both biochar and activated carbon belong to the category of mesoporous media, showing a pore size between 2 and 50 nm (20-500 Å). Moreover, the chemical composition analysis shows similar C, H, and N composition in the three carbonaceous materials while a higher O composition in RE-CHAR® (9.9%) than in CARBOSORB NC 1240 ® (2.67%) and AMBIOTON® (1.10%). Differences in physical and chemical properties are determined by the feedstock and pyrolysis or gasification temperature. The results obtained allowed to compare the selected materials among each other and with other carbonaceous adsorbents.
Collapse
Affiliation(s)
- Simone Marzeddu
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
- Correspondence: ; Tel.: +39-06-44585514
| | - María Alejandra Décima
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Luca Camilli
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Maria Paola Bracciale
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Virgilio Genova
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Laura Paglia
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Francesco Marra
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Martina Damizia
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Marco Stoller
- Department of Chemical Engineering Materials Environment (DICMA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Agostina Chiavola
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Maria Rosaria Boni
- Department of Civil, Constructional and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
5
|
Sannino F, Pansini M, Marocco A, Cinquegrana A, Esposito S, Tammaro O, Barrera G, Tiberto P, Allia P, Pirozzi D. Removal of sulfanilamide by tailor-made magnetic metal-ceramic nanocomposite adsorbents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114701. [PMID: 35217443 DOI: 10.1016/j.jenvman.2022.114701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Three tailor-made magnetic metal-ceramic nanocomposites, obtained from zeolite A (ZA1 and ZA2) and a natural clinoptilolite (LB1), have been used as adsorbents to remove sulfanilamide (SA), a sulfonamide antibiotic of common use, from water. A patented process for the synthesis of nanocomposites has been suitably modified to maximize the efficiency of the SA removal, as well as to extend the applicability of the materials. The role played by the main process parameters (kinetic, pH, initial concentration of SA) has been characterized. The significant effect of the pH on the SA removal has been explained identifying two possibly coexisting mechanisms of SA adsorption, based on polar and hydrophobic interactions, respectively. The adsorption kinetics have been in all cases described by the pseudo second-order model. The adsorption isotherms obtained with ZA1 have been satisfactorily described by the Langmuir model, suggesting a monolayer adsorption of SA on the magnetic nanocomposites resulting from a uniform surface energy. The isotherms obtained with LB1 could be described by a more complex approach, deriving by the additive superposition of Langmuir and Sips models. In order to ensure an effective removal of the antibiotic and a proper recycle of the magnetic adsorbents, a sustainable regeneration procedure of the exhausted adsorbent has been developed, based on the treatment with a dilute solution of NaOH.
Collapse
Affiliation(s)
- Filomena Sannino
- University of Naples "Federico II", Department of Agricultural Sciences, Via Università 100, 80055, Portici, Naples, Italy
| | - Michele Pansini
- Department of Civil and Mechanical Engineering and INSTM Research Unit, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, 03043, Cassino, FR, Italy
| | - Antonello Marocco
- Department of Civil and Mechanical Engineering and INSTM Research Unit, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, 03043, Cassino, FR, Italy
| | - Alessia Cinquegrana
- University of Naples "Federico II", Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), Laboratory of Biochemical Engineering. Piazzale Tecchio, 80, 80125, Naples, Italy
| | - Serena Esposito
- Department of Applied Science and Technology and INSTM Unit of Torino - Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Olimpia Tammaro
- Department of Applied Science and Technology and INSTM Unit of Torino - Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Gabriele Barrera
- INRiM Torino, Advanced Materials for Metrology and Life Sciences, Strada delle Cacce 91, 10143, Torino, Italy
| | - Paola Tiberto
- INRiM Torino, Advanced Materials for Metrology and Life Sciences, Strada delle Cacce 91, 10143, Torino, Italy
| | - Paolo Allia
- Department of Applied Science and Technology and INSTM Unit of Torino - Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy; INRiM Torino, Advanced Materials for Metrology and Life Sciences, Strada delle Cacce 91, 10143, Torino, Italy
| | - Domenico Pirozzi
- University of Naples "Federico II", Department of Chemical Engineering, Materials and Industrial Production (DICMaPI), Laboratory of Biochemical Engineering. Piazzale Tecchio, 80, 80125, Naples, Italy.
| |
Collapse
|
6
|
Utzeri G, Verissimo L, Murtinho D, Pais AACC, Perrin FX, Ziarelli F, Iordache TV, Sarbu A, Valente AJM. Poly(β-cyclodextrin)-Activated Carbon Gel Composites for Removal of Pesticides from Water. Molecules 2021; 26:1426. [PMID: 33800794 PMCID: PMC7962014 DOI: 10.3390/molecules26051426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Pesticides are widely used in agriculture to increase and protect crop production. A substantial percentage of the active substances applied is retained in the soil or flows into water courses, constituting a very relevant environmental problem. There are several methods for the removal of pesticides from soils and water; however, their efficiency is still a challenge. An alternative to current methods relies on the use of effective adsorbents in removing pesticides which are, simultaneously, capable of releasing pesticides into the soil when needed. This reduces costs related to their application and waste treatments and, thus, overall environmental costs. In this paper, we describe the synthesis and preparation of activated carbon-containing poly(β-cyclodextrin) composites. The composites were characterized by different techniques and their ability to absorb pesticides was assessed by using two active substances: cymoxanil and imidacloprid. Composites with 5 and 10 wt% of activated carbon showed very good stability, high removal efficiencies (>75%) and pesticide sorption capacity up to ca. 50 mg g-1. The effect of additives (NaCl and urea) was also evaluated. The composites were able to release around 30% of the initial sorbed amount of pesticide without losing the capacity to keep the maximum removal efficiency in sorption/desorption cycles.
Collapse
Affiliation(s)
- Gianluca Utzeri
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (G.U.); (L.V.); (D.M.); (A.A.C.C.P.)
| | - Luis Verissimo
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (G.U.); (L.V.); (D.M.); (A.A.C.C.P.)
| | - Dina Murtinho
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (G.U.); (L.V.); (D.M.); (A.A.C.C.P.)
| | - Alberto A. C. C. Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (G.U.); (L.V.); (D.M.); (A.A.C.C.P.)
| | - F. Xavier Perrin
- Laboratoire MAPIEM, Université de Toulon, 83041 Toulon CEDEX 9, France;
| | - Fabio Ziarelli
- CNRS, Centrale Marseille, FSCM, Aix Marseille University, 13397 Marseille CEDEX 20, France;
| | - Tanta-Verona Iordache
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independenței 202, 060021 București, Romania; (T.-V.I.); (A.S.)
| | - Andrei Sarbu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independenței 202, 060021 București, Romania; (T.-V.I.); (A.S.)
| | - Artur J. M. Valente
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (G.U.); (L.V.); (D.M.); (A.A.C.C.P.)
| |
Collapse
|
7
|
Residue Char Derived from Microwave-Assisted Pyrolysis of Sludge as Adsorbent for the Removal of Methylene Blue from Aqueous Solutions. Processes (Basel) 2020. [DOI: 10.3390/pr8080979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Residue char is the main by-product of the microwave-assisted pyrolysis of activated sludge and it has a high content of fixed carbon and porous structure, but little is known about its character as an absorbent. In this study, residue char of activated sludge with microwave-assisted pyrolysis was used as an adsorbent to absorb methylene blue. The effects of pyrolysis temperature, pyrolysis holding time, contact time, and adsorption temperature on the adsorption ability of residue char were investigated. Kinetics, isotherm, and thermodynamic models were also included to study the adsorption behavior. The results showed that the optimal pyrolysis condition was 15 min and 603 °C, and the adsorption capacity reached up to 80.01 mg/g. The kinetics analyses indicated the adsorption behavior followed the pseudo-second-order kinetics model and the adsorption process was mainly due to chemical interaction. The adsorption isotherm was described by Freundlich model and thus, its process was multimolecular layer adsorption. Furthermore, the thermodynamics parameters (ΔG0, ΔH0, and ΔS0) at different temperatures indicated that the nature of the adsorption process was endothermic and spontaneous.
Collapse
|
8
|
Separation of Biological Entities From Human Blood by Using Magnetic Nanocomposites Obtained From Zeolite Precursors. Molecules 2020; 25:molecules25081803. [PMID: 32295314 PMCID: PMC7221652 DOI: 10.3390/molecules25081803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/29/2022] Open
Abstract
In this work, three novel magnetic metal–ceramic nanocomposites were obtained by thermally treating Fe-exchanged zeolites (either A or X) under reducing atmosphere at relatively mild temperatures (750–800 °C). The so-obtained materials were thoroughly characterized from the point of view of their physico-chemical properties and, then, used as magnetic adsorbents in the separation of the target gene factors V and RNASE and of the Staphylococcus aureus bacteria DNA from human blood. Such results were compared with those obtained by using a top ranking commercial separation system (namely, SiMAG-N-DNA by Chemicell). The results obtained by using the novel magnetic adsorbents were similar to (or even better than) those obtained by using the commercial system, both during manual and automated separations, provided that a proper protocol was adopted. Particularly, the novel magnetic adsorbents showed high sensitivity during tests performed with small volumes of blood. Finally, the feasible production of such magnetic adsorbents by an industrial process was envisaged as well.
Collapse
|