1
|
Al-Fakih GOA, Ilyas RA, Atiqah A, Atikah MSN, Saidur R, Dufresne A, Saharudin MS, Abral H, Sapuan SM. Advanced functional materials based on nanocellulose/Mxene: A review. Int J Biol Macromol 2024; 278:135207. [PMID: 39256123 DOI: 10.1016/j.ijbiomac.2024.135207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
The escalating need for a sustainable future has driven the advancement of renewable functional materials. Nanocellulose, derived from the abundant natural biopolymer cellulose, demonstrates noteworthy characteristics, including high surface area, crystallinity, mechanical strength, and modifiable chemistry. When combined with two-dimensional (2D) graphitic materials, nanocellulose can generate sophisticated hybrid materials with diverse applications as building blocks, carriers, scaffolds, and reinforcing constituents. This review highlights the progress of research on advanced functional materials based on the integration of nanocellulose, a versatile biopolymer with tailorable properties, and MXenes, a new class of 2D transition metal carbides/nitrides known for their excellent conductivity, mechanical strength, and large surface area. By addressing the challenges and envisioning future prospects, this review underscores the burgeoning opportunities inherent in MXene/nanocellulose composites, heralding a sustainable frontier in the field of materials science.
Collapse
Affiliation(s)
- Ghassan O A Al-Fakih
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Centre for Advance Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - A Atiqah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - M S N Atikah
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R Saidur
- Research Centre for Nano-Materials and Energy Technology, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | | | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang, Sumatera Barat, Indonesia; Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang, Indonesia
| | - S M Sapuan
- Advanced Engineering Materials and Composite Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Nath N, Chakroborty S, Vishwakarma DP, Goga G, Yadav AS, Mohan R. Recent advances in sustainable nature-based functional materials for biomedical sensor technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57289-57313. [PMID: 36857000 PMCID: PMC9975880 DOI: 10.1007/s11356-023-26135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The lightweight, low-density, and low-cost natural polymers like cellulose, chitosan, and silk have good chemical and biodegradable properties due to their individually unique structural and functional elements. However, the mechanical properties of these polymers differ from each other. In this scenario, chitosan lacks good mechanical properties than cellulose and silk. The synthesis of nano natural polymer and reinforcement with suitable chemical compounds as the development of nanocomposite gives them promising multidisciplinary applications. Many kinds of research are already published with innovative bio-derived polymeric functional materials (Bd-PFM) applications. Most research interest is carried out on health concerns. Lots of attention has been paid to biomedical applications of Bd-PFM as biosensors. This review aims to provide a glimpse of the nanostructures Bd-PFM biosensors.
Collapse
Affiliation(s)
- Nibedita Nath
- Department of Chemistry, D.S Degree College, Laida, Sambalpur, Odisha, India
| | | | | | - Geetesh Goga
- Department of Mechanical Engineering, Bharat Group of Colleges, Sardulgarh, Punjab, 151507, India
| | - Anil Singh Yadav
- Department of Mechanical Engineering, IES College of Technology, Bhopal, Madhya Pradesh, India
| | - Ravindra Mohan
- Department of Mechanical Engineering, IES College of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
3
|
Liao M, Cui Q, Hu Y, Xing J, Wu D, Zheng S, Zhao Y, Yu Y, Sun J, Chai R. Recent advances in the application of MXenes for neural tissue engineering and regeneration. Neural Regen Res 2024; 19:258-263. [PMID: 37488875 PMCID: PMC10503607 DOI: 10.4103/1673-5374.379037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/21/2023] [Accepted: 05/05/2023] [Indexed: 07/26/2023] Open
Abstract
Transition metal carbides and nitrides (MXenes) are crystal nanomaterials with a number of surface functional groups such as fluorine, hydroxyl, and oxygen, which can be used as carriers for proteins and drugs. MXenes have excellent biocompatibility, electrical conductivity, surface hydrophilicity, mechanical properties and easy surface modification. However, at present, the stability of most MXenes needs to be improved, and more synthesis methods need to be explored. MXenes are good substrates for nerve cell regeneration and nerve reconstruction, which have broad application prospects in the repair of nervous system injury. Regarding the application of MXenes in neuroscience, mainly at the cellular level, the long-term in vivo biosafety and effects also need to be further explored. This review focuses on the progress of using MXenes in nerve regeneration over the last few years; discussing preparation of MXenes and their biocompatibility with different cells as well as the regulation by MXenes of nerve cell regeneration in two-dimensional and three-dimensional environments in vitro. MXenes have great potential in regulating the proliferation, differentiation, and maturation of nerve cells and in promoting regeneration and recovery after nerve injury. In addition, this review also presents the main challenges during optimization processes, such as the preparation of stable MXenes and long-term in vivo biosafety, and further discusses future directions in neural tissue engineering.
Collapse
Affiliation(s)
- Menghui Liao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiayue Xing
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
| | - Danqi Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
| | - Yu Zhao
- Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jingwu Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Lorencova L, Kasak P, Kosutova N, Jerigova M, Noskovicova E, Vikartovska A, Barath M, Farkas P, Tkac J. MXene-based electrochemical devices applied for healthcare applications. Mikrochim Acta 2024; 191:88. [PMID: 38206460 PMCID: PMC10784403 DOI: 10.1007/s00604-023-06163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The initial part of the review provides an extensive overview about MXenes as novel and exciting 2D nanomaterials describing their basic physico-chemical features, methods of their synthesis, and possible interfacial modifications and techniques, which could be applied to the characterization of MXenes. Unique physico-chemical parameters of MXenes make them attractive for many practical applications, which are shortly discussed. Use of MXenes for healthcare applications is a hot scientific discipline which is discussed in detail. The article focuses on determination of low molecular weight analytes (metabolites), high molecular weight analytes (DNA/RNA and proteins), or even cells, exosomes, and viruses detected using electrochemical sensors and biosensors. Separate chapters are provided to show the potential of MXene-based devices for determination of cancer biomarkers and as wearable sensors and biosensors for monitoring of a wide range of human activities.
Collapse
Affiliation(s)
- Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Monika Jerigova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Eva Noskovicova
- International Laser Center, Slovak Center of Scientific and Technical Information, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Mlynska Dolina, 842 15, Bratislava, Slovak Republic
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Marek Barath
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Pavol Farkas
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Gopinath SCB, Ramanathan S, More M, Patil K, Patil SJ, Patil N, Mahajan M, Madhavi V. A Review on Graphene Analytical Sensors for Biomarker-based Detection of Cancer. Curr Med Chem 2024; 31:1464-1484. [PMID: 37702170 DOI: 10.2174/0929867331666230912101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
The engineering of nanoscale materials has broadened the scope of nanotechnology in a restricted functional system. Today, significant priority is given to immediate health diagnosis and monitoring tools for point-of-care testing and patient care. Graphene, as a one-atom carbon compound, has the potential to detect cancer biomarkers and its derivatives. The atom-wide graphene layer specialises in physicochemical characteristics, such as improved electrical and thermal conductivity, optical transparency, and increased chemical and mechanical strength, thus making it the best material for cancer biomarker detection. The outstanding mechanical, electrical, electrochemical, and optical properties of two-dimensional graphene can fulfil the scientific goal of any biosensor development, which is to develop a more compact and portable point-of-care device for quick and early cancer diagnosis. The bio-functionalisation of recognised biomarkers can be improved by oxygenated graphene layers and their composites. The significance of graphene that gleans its missing data for its high expertise to be evaluated, including the variety in surface modification and analytical reports. This review provides critical insights into graphene to inspire research that would address the current and remaining hurdles in cancer diagnosis.
Collapse
Affiliation(s)
- Subash Chandra Bose Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Santheraleka Ramanathan
- Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mahesh More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, India
| | - Ketan Patil
- Department of Pharmaceutics, Ahinsa Institute of Pharmacy, Dondaicha, India
| | | | - Narendra Patil
- Department of Pharmacology, Dr. A.P.J. Abdul Kalam University, Indore, India
| | - Mahendra Mahajan
- Department of Pharmaceutical Chemistry, H.R. Patel Institute of Pharmacy, Shirpur, India
| | - Vemula Madhavi
- BVRIT Hyderabad college of Engineering for Women, Hyderabad, India
| |
Collapse
|
6
|
Ma J, Zhang L, Lei B. Multifunctional MXene-Based Bioactive Materials for Integrated Regeneration Therapy. ACS NANO 2023; 17:19526-19549. [PMID: 37804317 DOI: 10.1021/acsnano.3c01913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
The reconstruction engineering of tissue defects accompanied by major diseases including cancer, infection, and inflammation is one of the important challenges in clinical medicine. The development of innovative tissue engineering strategies such as multifunctional bioactive materials presents a great potential to overcome the challenge of disease-impaired tissue regeneration. As the major representative of two-dimensional nanomaterials, MXenes have shown multifunctional physicochemical properties and have been diffusely studied as multimodal nanoplatforms in the field of biomedicine. This review summarized the recent advances in the multifunctional properties of MXenes and integrated regeneration-therapy applications of MXene-based biomaterials, including tissue regeneration-tumor therapy, tissue regeneration-infection therapy, and tissue regeneration-inflammation therapy. MXenes have been recognized as good candidates for promoting tissue regeneration and treating diseases through photothermal therapy, regulating cell behavior, and drug and gene delivery. The current challenges and future perspectives of MXene-based biomaterials in integrated regeneration-therapy are also discussed well in this review. In summary, MXene-based biomaterials have shown promising potential for integrated tissue regeneration and disease treatment due to their favorable physicochemical properties and bioactive functions. However, there are still many obstacles and challenges that must be addressed for the regeneration-therapy applications of MXene-based biomaterials, including understanding the bioactive mechanism, ensuring long-term biosafety, and improving their targeting therapy capacity.
Collapse
Affiliation(s)
- Junping Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Long Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| |
Collapse
|
7
|
Pranav, Laskar P, Jaggi M, Chauhan SC, Yallapu MM. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. J Adv Res 2023; 51:197-217. [PMID: 36368516 PMCID: PMC10491979 DOI: 10.1016/j.jare.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Even with the advancement in the areas of cancer nanotechnology, prostate cancer still poses a major threat to men's health. Nanomaterials and nanomaterial-derived theranostic systems have been explored for diagnosis, imaging, and therapy for different types of cancer still, for prostate cancer they have not delivered at full potential because of the limitations like in vivo biocompatibility, immune responses, precise targetability, and therapeutic outcome associated with the nanostructured system. AIM OF REVIEW Functionalizing nanomaterials with different biomolecules and bioactive agents provides advantages like specificity towards cancerous tumors, improved circulation time, and modulation of the immune response leading to early diagnosis and targeted delivery of cargo at the site of action. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we have emphasized the classification and comparison of various nanomaterials based on biofunctionalization strategy and source of biomolecules such that it can be used for possible translation in clinical settings and future developments. This review highlighted the opportunities for embedding highly specific biological targeting moieties (antibody, aptamer, oligonucleotides, biopolymer, peptides, etc.) on nanoparticles which can improve the detection of prostate cancer-associated biomarkers at a very low limit of detection, direct visualization of prostate tumors and lastly for its therapy. Lastly, special emphasis was given to biomimetic nanomaterials which include functionalization with extracellular vesicles, exosomes and viral particles and their application for prostate cancer early detection and drug delivery. The present review paves a new pathway for next-generation biofunctionalized nanomaterials for prostate cancer theranostic application and their possibility in clinical translation.
Collapse
Affiliation(s)
- Pranav
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
8
|
Hroncekova S, Lorencova L, Bertok T, Hires M, Jane E, Bučko M, Kasak P, Tkac J. Amperometric Miniaturised Portable Enzymatic Nanobiosensor for the Ultrasensitive Analysis of a Prostate Cancer Biomarker. J Funct Biomater 2023; 14:jfb14030161. [PMID: 36976085 PMCID: PMC10056543 DOI: 10.3390/jfb14030161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Screen-printing technology is a game changer in many fields including electrochemical biosensing. Two-dimensional nanomaterial MXene Ti3C2Tx was integrated as a nanoplatform to immobilise enzyme sarcosine oxidase (SOx) onto the interface of screen-printed carbon electrodes (SPCEs). A miniaturised, portable, and cost-effective nanobiosensor was constructed using chitosan as a biocompatible glue for the ultrasensitive detection of prostate cancer biomarker sarcosine. The fabricated device was characterised with energy-dispersive X-ray spectroscopy (EDX), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Sarcosine was detected indirectly via the amperometric detection of H2O2 formed during enzymatic reaction. The nanobiosensor could detect sarcosine down to 7.0 nM with a maximal peak current output at 4.10 ± 0.35 × 10−5 A using only 100 µL of a sample per measurement. The assay run in 100 μL of an electrolyte showed the first linear calibration curve in a concentration window of up to 5 μM with a slope of 2.86 μA·μM−1, and the second linear calibration curve in the range of 5–50 μM with a slope of 0.32 ± 0.01 μA·μM−1 (R2 = 0.992). The device provided a high recovery index of 92.5% when measuring an analyte spiked into artificial urine, and could be used for detection of sarcosine in urine for at least a period of 5 weeks after the preparation.
Collapse
Affiliation(s)
- Stefania Hroncekova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia
| | - Marek Bučko
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
9
|
Liao C, Wu Z, Lin C, Chen X, Zou Y, Zhao W, Li X, Huang G, Xu B, Briganti GE, Qi Y, Wang X, Zeng T, Wuethrich A, Zou H. Nurturing the marriages of urinary liquid biopsies and nano-diagnostics for precision urinalysis of prostate cancer. SMART MEDICINE 2023; 2:e20220020. [PMID: 39188554 PMCID: PMC11236013 DOI: 10.1002/smmd.20220020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/28/2024]
Abstract
Prostate cancer remains the second-most common cancer diagnosed in men, despite the increasingly widespread use of serum prostate-specific antigen (PSA) screening. The controversial clinical implications and cost benefits of PSA screening have been highlighted due to its poor specificity, resulting in a high rate of overdiagnosis and underdiagnosis. Thus, the development of novel biomarkers for prostate cancer detection remains an intriguing challenge. Urine is emerging as a source for prostate cancer biomarker discovery. Currently, new urine biomarkers already outperform serum PSA in clinical diagnosis. Meanwhile, the advances in nanotechnology have provided a suite of diagnostic tools to study prostate cancer in more detail, sparking a new era of biomarker discoveries. In this review, we envision that future prostate cancer diagnosis will probably integrate multiplex nano-diagnostic approaches to detect novel urinary biomarkers. However, challenges remain in differentiating indolent from aggressive cancers to better inform treatment decisions, and clinical translation still needs to be overcome.
Collapse
Affiliation(s)
- Caizhi Liao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Zhihao Wu
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Chan Lin
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xiaofeng Chen
- School of Environmental and Geographical SciencesShanghai Normal UniversityShanghaiChina
- School of ChemistryNorthwestern UniversityChicagoIllinoisUSA
| | - Yaqun Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Wan Zhao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xin Li
- Department of UrologySir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | | | - Baisheng Xu
- Department of UrologyThe First People's Hospital of XiushuiJiujiangChina
| | | | - Yan Qi
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Tao Zeng
- Department of Urologythe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbaneQueenslandAustralia
| | - Hongzhi Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Low-density Pt nanoarray-based hydrogen peroxide sensing platform and its application in trace sarcosine detection. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Gao N, Zhao J, Zhu X, Xu J, Ling G, Zhang P. Functional two-dimensional MXenes as cancer theranostic agents. Acta Biomater 2022; 154:1-22. [PMID: 36243374 DOI: 10.1016/j.actbio.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Recently, MXenes, as a kind of two-dimensional (2D) layered materials with exceptional performance, have become the research hotspots owing to their unique structural, electronic, and chemical properties. They have potential applications in electrochemical storage, photocatalysis, and biosensors. Furthermore, they have certain characteristics such as large surface area, favorable biocompatibility, and ideal mechanical properties, which can expand their applications in biomedical fields, especially in cancer therapy. To date, several researchers have explored the applications of MXenes in tumor elimination, which exhibited other fantastic properties of those 2D MXenes, such as efficient in vivo photothermal ablation, low phototoxicity, high biocompatibility, etc. In this review, the structures, properties, modifications, and preparation methods are introduced respectively. More importantly, the multifunctional platforms for cancer therapy based on MXenes nanosheets (NSs) are reviewed in detail, including single-modality and combined-modality cancer therapy. Finally, the prospects and challenges of MXenes are prospected and discussed. STATEMENT OF SIGNIFICANCE: In this review, the structures, properties, modifications, and preparation methods of MXenes nanomaterials are introduced, respectively. In addition, the preparation conditions and morphological characterizations of some common MXenes for therapeutic platforms are also summarized. More importantly, the practical applications of MXenes-based nanosheets are reviewed in detail, including drug delivery, biosensing, bioimaging, and multifunctional tumor therapy platforms. Finally, the future prospects and challenges of MXenes are prospected and discussed.
Collapse
Affiliation(s)
- Nan Gao
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiaqi Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
12
|
Khan H, Shah MR, Barek J, Malik MI. Cancer biomarkers and their biosensors: A comprehensive review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
|
14
|
Shokrani H, Shokrani A, Sajadi SM, Khodadadi Yazdi M, Seidi F, Jouyandeh M, Zarrintaj P, Kar S, Kim SJ, Kuang T, Rabiee N, Hejna A, Saeb MR, Ramakrishna S. Polysaccharide-based nanocomposites for biomedical applications: a critical review. NANOSCALE HORIZONS 2022; 7:1136-1160. [PMID: 35881463 DOI: 10.1039/d2nh00214k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polysaccharides (PSA) have taken specific position among biomaterials for advanced applications in medicine. Nevertheless, poor mechanical properties are known as the main drawback of PSA, which highlights the need for PSA modification. Nanocomposites PSA (NPSA) are a class of biomaterials widely used as biomedical platforms, but despite their importance and worldwide use, they have not been reviewed. Herein, we critically reviewed the application of NPSA by categorizing them into generic and advanced application realms. First, the application of NPSA as drug and gene delivery systems, along with their role in the field as an antibacterial platform and hemostasis agent is discussed. Then, applications of NPSA for skin, bone, nerve, and cartilage tissue engineering are highlighted, followed by cell encapsulation and more critically cancer diagnosis and treatment potentials. In particular, three features of investigations are devoted to cancer therapy, i.e., radiotherapy, immunotherapy, and photothermal therapy, are comprehensively reviewed and discussed. Since this field is at an early stage of maturity, some other aspects such as bioimaging and biosensing are reviewed in order to give an idea of potential applications of NPSA for future developments, providing support for clinical applications. It is well-documented that using nanoparticles/nanomaterials above a critical concentration brings about concerns of toxicity; thus, their effect on cellular interactions would become critical. We compared nanoparticles used in the fabrication of NPSA in terms of toxicity mechanism to shed more light on future challenging aspects of NPSA development. Indeed, the neutralization mechanisms underlying the cytotoxicity of nanomaterials, which are expected to be induced by PSA introduction, should be taken into account for future investigations.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alexander Hejna
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University Singapore, 10 Kent Ridge, Crescent 119260, Singapore.
| |
Collapse
|
15
|
Ali MR, Bacchu MS, Al-Mamun MR, Hossain MI, Khaleque A, Khatun A, Ridoy DD, Aly MAS, Khan MZH. Recent Advanced in MXene Research toward Biosensor Development. Crit Rev Anal Chem 2022; 54:1381-1398. [PMID: 36068703 DOI: 10.1080/10408347.2022.2115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
MXene is a rapidly emerging group of two-dimensional (2D) multifunctional nanomaterials, drawing huge attention from researchers of a broad scientific field. Reporting the synthesis of MXene was the following breakthrough in 2D materials following the discovery of graphene. MXene is considered the most recent developments of materials, including transition metal carbonitrides, nitrides, and carbides synthesized by etching or mechanical-based exfoliation of selective MAX phases. MXene has a plethora of prodigious properties such as unique interlayer spacing, high ion and electron transport, large surface area, excellent thermal and electrical conductivity, exceptional volumetric capacitance, thermal shock, and oxidation resistance, easily machinable and inherently hydrophilic, and biocompatibility. Owing to the abundance of tailorable surface function groups, these properties can be further enhanced by surface functionalization with covalent and non-covalent modifications via numerous surface functionalization methods. Therefore, MXene finds their way to a plethora of applications in numerous fields including catalysis, membrane separation, energy storage, sensing, and biomedicine. Here, the focus is on reviewing the structure, synthesis techniques, and functionalization methods of MXene. Furthermore, MXene-based detection platforms in different sensing applications are survived. Great attention is given to reviewing the applications of MXene in the detection of biomolecules, pathogenic bacteria and viruses, cancer biomarkers food contaminants and mycotoxins, and hazardous pollutants. Lastly, the future perspective of MXene-based biosensors as a next-generation diagnostics tool is discussed. Crucial visions are introduced for materials science and sensing communities to better route while investigating the potential of MXene for creating innovative detection mechanisms.
Collapse
Affiliation(s)
- Md Romzan Ali
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Md Sadek Bacchu
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Md Rashid Al-Mamun
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Md Ikram Hossain
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Abdul Khaleque
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Anowara Khatun
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Dipto Debnath Ridoy
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Mohamed Aly Saad Aly
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Md Zaved Hossain Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| |
Collapse
|
16
|
Li Y, Hu Y, Wei H, Cao W, Qi Y, Zhou S, Zhang P, Li H, Li GL, Chai R. Two-dimensional Ti 3C 2T x MXene promotes electrophysiological maturation of neural circuits. J Nanobiotechnology 2022; 20:398. [PMID: 36045382 PMCID: PMC9434915 DOI: 10.1186/s12951-022-01590-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ideal neural interface or scaffold for stem cell therapy shall have good biocompatibility promoting survival, maturation and integration of neural stem cells (NSCs) in targeted brain regions. The unique electrical, hydrophilic and surface-modifiable properties of Ti3C2Tx MXene make it an attractive substrate, but little is known about how it interacts with NSCs during development and maturation. RESULTS In this study, we cultured NSCs on Ti3C2Tx MXene and examined its effects on morphological and electrophysiological properties of NSC-derived neurons. With a combination of immunostaining and patch-clamp recording, we found that Ti3C2Tx MXene promotes NSCs differentiation and neurite growth, increases voltage-gated current of Ca2+ but not Na+ or K+ in matured neurons, boosts their spiking without changing their passive membrane properties, and enhances synaptic transmission between them. CONCLUSIONS These results expand our understanding of interaction between Ti3C2Tx MXene and NSCs and provide a critical line of evidence for using Ti3C2Tx MXene in neural interface or scaffold in stem cell therapy.
Collapse
Affiliation(s)
- Yige Li
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yangnan Hu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hao Wei
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Wei Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, 230069, China
| | - Yanru Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shan Zhou
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Panpan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Huawei Li
- Department of Otorhinolaryngology and ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,NHC Key Laboratory of Hearing Medicine Fudan University, Shanghai, 200031, China. .,Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Geng-Lin Li
- Department of Otorhinolaryngology and ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine Fudan University, Shanghai, 200031, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China. .,Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100086, China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
17
|
Iravani P, Iravani S, Varma RS. MXene-Chitosan Composites and Their Biomedical Potentials. MICROMACHINES 2022; 13:1383. [PMID: 36144006 PMCID: PMC9500609 DOI: 10.3390/mi13091383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/21/2023]
Abstract
Today, MXenes with fascinating electronic, thermal, optical, and mechanical features have been broadly studied for biomedical applications, such as drug/gene delivery, photothermal/photodynamic therapy, antimicrobials/antivirals, sensing, tissue engineering, and regenerative medicine. In this context, various MXene-polymer composites have been designed to improve the characteristics such as physiological stability, sustained/controlled release behaviors, biodegradability, biocompatibility, selectivity/sensitivity, and functionality. Chitosan with advantages of ease of modification, biodegradability, antibacterial activities, non-toxicity, and biocompatibility can be considered as attractive materials for designing hybridized composites together with MXenes. These hybrid composites ought to be further explored for biomedical applications because of their unique properties such as high photothermal conversion efficiency, improved stability, selectivity/sensitivity, stimuli-responsiveness behaviors, and superior antibacterial features. These unique structural, functional, and biological attributes indicate that MXene-chitosan composites are attractive alternatives in biomedical engineering. However, several crucial aspects regarding the surface functionalization/modification, hybridization, nanotoxicological analyses, long-term biosafety assessments, biocompatibility, in vitro/in vivo evaluations, identification of optimization conditions, implementation of environmentally-benign synthesis techniques, and clinical translation studies are still need to be examined by researchers. Although very limited studies have revealed the great potentials of MXene-chitosan hybrids in biomedicine, the next steps should be toward the extensive research and detailed analyses in optimizing their properties and improving their functionality with a clinical and industrial outlook. Herein, recent developments in the use of MXene-chitosan composites with biomedical potentials are deliberated, with a focus on important challenges and future perspectives. In view of the fascinating properties and multifunctionality of MXene-chitosan composites, these hybrid materials can open significant new opportunities in the future for bio- and nano-medicine arena.
Collapse
Affiliation(s)
- Parisa Iravani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
18
|
Ran B, Chen C, Liu B, Lan M, Chen H, Zhu Y. A Ti
3
C
2
T
X
/Pt–Pd based amperometric biosensor for sensitive cancer biomarker detection. Electrophoresis 2022; 43:2033-2043. [DOI: 10.1002/elps.202100218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Bin Ran
- School of Science Harbin Institute of Technology, Shenzhen Shenzhen P. R. China
| | - Chaozhan Chen
- School of Science Harbin Institute of Technology, Shenzhen Shenzhen P. R. China
| | - Bo Liu
- School of Science Harbin Institute of Technology, Shenzhen Shenzhen P. R. China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai P. R. China
| | - Huaying Chen
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen Shenzhen P. R. China
- Center for Microflows and Nanoflows Harbin Institute of Technology, Shenzhen Shenzhen P. R. China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation Harbin Institute of Technology, Shenzhen Shenzhen P. R. China
- Center for Microflows and Nanoflows Harbin Institute of Technology, Shenzhen Shenzhen P. R. China
| |
Collapse
|
19
|
Idumah CI. Emerging advancements in MXene polysaccharide bionanoarchitectures and biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2098297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University Awka, Awka, Anambra State, Nigeria
| |
Collapse
|
20
|
Zhu S, Liu Y, Gu Z, Zhao Y. Research trends in biomedical applications of two-dimensional nanomaterials over the last decade - A bibliometric analysis. Adv Drug Deliv Rev 2022; 188:114420. [PMID: 35835354 DOI: 10.1016/j.addr.2022.114420] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Two-dimensional (2D) nanomaterials with versatile properties have been widely applied in the field of biomedicine. Despite various studies having reviewed the development of biomedical 2D nanomaterials, there is a lack of a study that objectively summarizes and analyzes the research trend of this important field. Here, we employ a series of bibliometric methods to identify the development of the 2D nanomaterial-related biomedical field during the past 10 years from a holistic point of view. First, the annual publication/citation growth, country/institute/author distribution, referenced sources, and research hotspots are identified. Thereafter, based on the objectively identified research hotspots, the contributions of 2D nanomaterials to the various biomedical subfields, including those of biosensing, imaging/therapy, antibacterial treatment, and tissue engineering are carefully explored, by considering the intrinsic properties of the nanomaterials. Finally, prospects and challenges have been discussed to shed light on the future development and clinical translation of 2D nanomaterials. This review provides a novel perspective to identify and further promote the development of 2D nanomaterials in biomedical research.
Collapse
Affiliation(s)
- Shuang Zhu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230001, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing 100049, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Koyappayil A, Chavan SG, Roh YG, Lee MH. Advances of MXenes; Perspectives on Biomedical Research. BIOSENSORS 2022; 12:454. [PMID: 35884257 PMCID: PMC9313156 DOI: 10.3390/bios12070454] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022]
Abstract
The last decade witnessed the emergence of a new family of 2D transition metal carbides and nitrides named MXenes, which quickly gained momentum due to their exceptional electrical, mechanical, optical, and tunable functionalities. These outstanding properties also rendered them attractive materials for biomedical and biosensing applications, including drug delivery systems, antimicrobial applications, tissue engineering, sensor probes, auxiliary agents for photothermal therapy and hyperthermia applications, etc. The hydrophilic nature of MXenes with rich surface functional groups is advantageous for biomedical applications over hydrophobic nanoparticles that may require complicated surface modifications. As an emerging 2D material with numerous phases and endless possible combinations with other 2D materials, 1D materials, nanoparticles, macromolecules, polymers, etc., MXenes opened a vast terra incognita for diverse biomedical applications. Recently, MXene research picked up the pace and resulted in a flood of literature reports with significant advancements in the biomedical field. In this context, this review will discuss the recent advancements, design principles, and working mechanisms of some interesting MXene-based biomedical applications. It also includes major progress, as well as key challenges of various types of MXenes and functional MXenes in conjugation with drug molecules, metallic nanoparticles, polymeric substrates, and other macromolecules. Finally, the future possibilities and challenges of this magnificent material are discussed in detail.
Collapse
Affiliation(s)
- Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Yun-Gil Roh
- Department of Convergence in Health and Biomedicine, Chungbuk University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Korea;
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| |
Collapse
|
22
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Siva Sangu S, Chandra Bose Gopinath S, Abdul Shukur MF, Mohamed Saheed MS. An Electrochemical Approach for Ultrasensitive Detection of Zearalenone in Commodity Using Disposable Screen-Printed Electrode Coated with MXene/Chitosan Film. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00984-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Pires LS, Magalhães FD, Pinto AM. New Polymeric Composites Based on Two-Dimensional Nanomaterials for Biomedical Applications. Polymers (Basel) 2022; 14:1464. [PMID: 35406337 PMCID: PMC9003422 DOI: 10.3390/polym14071464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
The constant evolution and advancement of the biomedical field requires robust and innovative research. Two-dimensional nanomaterials are an emerging class of materials that have risen the attention of the scientific community. Their unique properties, such as high surface-to-volume ratio, easy functionalization, photothermal conversion, among others, make them highly versatile for a plethora of applications ranging from energy storage, optoelectronics, to biomedical applications. Recent works have proven the efficiency of 2D nanomaterials for cancer photothermal therapy (PTT), drug delivery, tissue engineering, and biosensing. Combining these materials with hydrogels and scaffolds can enhance their biocompatibility and improve treatment for a variety of diseases/injuries. However, given that the use of two-dimensional nanomaterials-based polymeric composites for biomedical applications is a very recent subject, there is a lot of scattered information. Hence, this review gathers the most recent works employing these polymeric composites for biomedical applications, providing the reader with a general overview of their potential.
Collapse
Affiliation(s)
- Laura S. Pires
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal; (L.S.P.); (F.D.M.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| |
Collapse
|
25
|
Deswal R, Narwal V, Kumar P, Verma V, Dang AS, Pundir C. An improved amperometric sarcosine biosensor based on graphene nanoribbon/chitosan nanocomposite for detection of prostate cancer. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
26
|
Damiri F, Rahman MH, Zehravi M, Awaji AA, Nasrullah MZ, Gad HA, Bani-Fwaz MZ, Varma RS, Germoush MO, Al-malky HS, Sayed AA, Rojekar S, Abdel-Daim MM, Berrada M. MXene (Ti 3C 2T x)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1666. [PMID: 35268907 PMCID: PMC8911478 DOI: 10.3390/ma15051666] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023]
Abstract
Polymeric nanocomposites have been outstanding functional materials and have garnered immense attention as sustainable materials to address multi-disciplinary problems. MXenes have emerged as a newer class of 2D materials that produce metallic conductivity upon interaction with hydrophilic species, and their delamination affords monolayer nanoplatelets of a thickness of about one nm and a side size in the micrometer range. Delaminated MXene has a high aspect ratio, making it an alluring nanofiller for multifunctional polymer nanocomposites. Herein, we have classified and discussed the structure, properties and application of major polysaccharide-based electroactive hydrogels (hyaluronic acid (HA), alginate sodium (SA), chitosan (CS) and cellulose) in biomedical applications, starting with the brief historical account of MXene's development followed by successive discussions on the synthesis methods, structures and properties of nanocomposites encompassing polysaccharides and MXenes, including their biomedical applications, cytotoxicity and biocompatibility aspects. Finally, the MXenes and their utility in the biomedical arena is deliberated with an eye on potential opportunities and challenges anticipated for them in the future, thus promoting their multifaceted applications.
Collapse
Affiliation(s)
- Fouad Damiri
- Labortory of Biomolecules and Organic Synthesis (BioSynthO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon, Korea
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Alkharj 11942, Saudi Arabia;
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Heba A. Gad
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mutasem Z. Bani-Fwaz
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Hamdan S. Al-malky
- Regional Drug Information Center, Ministry of Health, Jeddah 21589, Saudi Arabia;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Berrada
- Labortory of Biomolecules and Organic Synthesis (BioSynthO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| |
Collapse
|
27
|
WU W, WU Q, REN SN, LIU Z, CHEN FF. Ti3C2-MXene-assisted signal amplification for sensitive and selective surface plasmon resonance biosensing of biomarker. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Wu B, Li Z, Kang Z, Ma C, Song H, Lu F, Zhu Z. An Enzymatic Biosensor for the Detection of D-2-Hydroxyglutaric Acid in Serum and Urine. BIOSENSORS 2022; 12:bios12020066. [PMID: 35200327 PMCID: PMC8869338 DOI: 10.3390/bios12020066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 05/28/2023]
Abstract
D-2-hydroxyglutaric acid (D2HG) is overproduced as a result of the D-2-hydroxyglutaric aciduria and relevant cancers, caused by gene mutation. Accurate analysis of D2HG could help rapid diagnosis of these diseases and allow for timely treatment. In this work, a D-2-hydroxyglutarate dehydrogenase from Ralstonia solanacearum (RsD2HGDH) is cloned and recombinantly expressed. This enzyme features the direct electron transfer to chemical electron mediators (such as methylene blue (MB)) in the absence of additional coenzymes. Therefore, NAD+, a natural electron acceptor for the commercial D2HGDH and usually known for being unstable and difficult for immobilization can be avoided in the preparation of biosensors. The RsD2HGDH and MB are co-immobilized on a two-dimensional material, Ti3C2 MXene, followed by drop-coating on the gold screen-printed electrode (AuSPE) to construct a compact and portable biosensor. The D2HG in samples can be catalyzed by RsD2HGDH, where the current change is measured by chronoamperometry at -0.23 V. The biosensor shows a D2HG detection range of 0.5 to 120 µM (R2 = 0.9974) with a sensitivity of 22.26 μA mM-1 cm-2 and a detection limit of 0.1 µM (S/N = 3). The biosensor retains 72.52% performance of its incipient state after 30 days of storage. The samples of D2HG-containing fetal bovine serum and artificial urine were analyzed with the recovery of 99.56% to 106.83% and 97.30% to 102.47% further indicating the great application potential of our portable D2HG biosensor.
Collapse
Affiliation(s)
- Bo Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No.9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China; (B.W.); (F.L.)
- Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
| | - Zehua Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zepeng Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
| | - Haiyan Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No.9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China; (B.W.); (F.L.)
- Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, No.9, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China; (Z.L.); (Z.K.); (C.M.); (H.S.)
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
29
|
Alwarappan S, Nesakumar N, Sun D, Hu TY, Li CZ. 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens Bioelectron 2022; 205:113943. [PMID: 35219021 DOI: 10.1016/j.bios.2021.113943] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
MXenes are layered two-dimensional (2D) materials discovered in 2011 (Ti3C2X) and are otherwise called 2D transition metal carbides, carbonitrides, and nitrides. These 2D layered materials have been in the limelight for a decade due to their interesting properties such as large surface area, high ion transport, biocompatibility, and low diffusion barrier. Therefore, MXenes are widely preferred by researchers for applications in electronics, sensing, biosensing, electrocatalysis, super-capacitors and fuel cells. There are a number of methods available for the bulk synthesis of MXene-based nanomaterials. In addition, the possibility of structural modification as required and its outstanding surface chemistry offer a fascinating interface for the development of novel biosensors. In this review, we specifically discuss important MXene synthesis routes. Moreover, critical parameters such as surface functionalization that can dictate the mechanical, electronic, magnetic, and optical properties of MXenes are also discussed. Following this, methods available for the surface functionalization and modification strategies of MXenes are also discussed. Furthermore, the emergence of gas, electrochemical, and optical biosensors based on MXenes since its first report is discussed in detail. Finally, future directions of MXenes biosensors for critical applications are discussed.
Collapse
Affiliation(s)
- Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Noel Nesakumar
- Center for Nanotechnology & Advanced Biomaterials CeNTAB, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613 401, India
| | - Dali Sun
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd, 101S, Fargo, ND, 58102, USA
| | - Tony Y Hu
- Center For Cellular and Molecular Diagnosis, Department of Biochemistry and Molecular Biology, Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Chen-Zhong Li
- Center For Cellular and Molecular Diagnosis, Department of Biochemistry and Molecular Biology, Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
30
|
Fadahunsi AA, Li C, Khan MI, Ding W. MXenes: state-of-the-art synthesis, composites and bioapplications. J Mater Chem B 2022; 10:4331-4345. [PMID: 35640492 DOI: 10.1039/d2tb00289b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
MXenes have proven significant potential in a multitude of scientific domains as they provide substantial benefits over carbon graphene, such as ease of production and functionalization, large surface area, adjustable...
Collapse
Affiliation(s)
- Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Muhammad Imran Khan
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
31
|
Pillai S, Upadhyay A, Sayson D, Nguyen BH, Tran SD. Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring. Molecules 2021; 27:165. [PMID: 35011400 PMCID: PMC8746599 DOI: 10.3390/molecules27010165] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
In the past decade, wearable biosensors have radically changed our outlook on contemporary medical healthcare monitoring systems. These smart, multiplexed devices allow us to quantify dynamic biological signals in real time through highly sensitive, miniaturized sensing platforms, thereby decentralizing the concept of regular clinical check-ups and diagnosis towards more versatile, remote, and personalized healthcare monitoring. This paradigm shift in healthcare delivery can be attributed to the development of nanomaterials and improvements made to non-invasive biosignal detection systems alongside integrated approaches for multifaceted data acquisition and interpretation. The discovery of new biomarkers and the use of bioaffinity recognition elements like aptamers and peptide arrays combined with the use of newly developed, flexible, and conductive materials that interact with skin surfaces has led to the widespread application of biosensors in the biomedical field. This review focuses on the recent advances made in wearable technology for remote healthcare monitoring. It classifies their development and application in terms of electrochemical, mechanical, and optical modes of transduction and type of material used and discusses the shortcomings accompanying their large-scale fabrication and commercialization. A brief note on the most widely used materials and their improvements in wearable sensor development is outlined along with instructions for the future of medical wearables.
Collapse
Affiliation(s)
- Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Darren Sayson
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Bich Hong Nguyen
- Department of Pediatrics, CHU Sainte Justine Hospital, Montreal, QC H3T 1C5, Canada;
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| |
Collapse
|
32
|
Yadav N, Dahiya T, Chhillar AK, Rana JS, Mohan H. Promising Applications of Nanotechnology in Cancer Diagnostics and Therapeutics. Curr Pharm Biotechnol 2021; 23:1556-1568. [PMID: 34951360 DOI: 10.2174/1389201023666211222165508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
Cancer is characterized by the accumulation of genetic mutations in cells by different types of mutagens such as physical, chemical, and biological. Consequently, normal cell cycles get interrupted. Conventional techniques used for diagnosis include. Various conventional techniques used for cancer diagnosis include immunological assays, histopathogical tests, polymerase chain reaction, computed tomography, magnetic resonance, radiation therapy, and many more. These techniques are expensive, time consuming, tedious, adverse effects to healthy cells and requirement of skilled personnel for their operation. Therefore nanomaterials based biosensors have been used for the sensitive, selective, economic and quick detection of cancer biomarkers. Electrochemical biosensors have shown profound impact in efficient diagnosis of cancers that facilitate the effective treatment of patient in acute stage. Nanomaterials including inorganic, organic and polymeric nanomaterials have been used in the treatment of different types of cancers. Nanoapproaches have offered several merits including site-specific, require traces amount of therapeutic molecules, limited toxicity, avoid drug resistance, more efficient, sensitive and reliable than conventional chemotherapeutics and radiation therapies. Therefore, future research should be focussed on development of highly inventive nanotools for the diagnosis and therapeutics of cancers.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, -131039, Haryana. India
| | - Twinkle Dahiya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, -131039, Haryana. India
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, -131039, Haryana. India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana. India
| |
Collapse
|
33
|
Abedi R, Bakhsh Raoof J, Bagheri Hashkavayi A, Asghary M. Highly sensitive and label-free electrochemical biosensor based on gold nanostructures for studying the interaction of prostate cancer gene sequence with epirubicin anti-cancer drug. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Jamalipour Soufi G, Iravani P, Hekmatnia A, Mostafavi E, Khatami M, Iravani S. MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1990890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Parisa Iravani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hekmatnia
- Radiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The review initially provides a short introduction to prostate cancer (PCa) incidence, mortality, and diagnostics. Next, the need for novel biomarkers for PCa diagnostics is briefly discussed. The core of the review provides details about PCa aetiology, alternative biomarkers available for PCa diagnostics besides prostate specific antigen and their biosensing. In particular, low molecular mass biomolecules (ions and metabolites) and high molecular mass biomolecules (proteins, RNA, DNA, glycoproteins, enzymes) are discussed, along with clinical performance parameters.
Collapse
|
36
|
Rajarathinam T, Kwon M, Thirumalai D, Kim S, Lee S, Yoon JH, Paik HJ, Kim S, Lee J, Ha HK, Chang SC. Polymer-dispersed reduced graphene oxide nanosheets and Prussian blue modified biosensor for amperometric detection of sarcosine. Anal Chim Acta 2021; 1175:338749. [PMID: 34330447 DOI: 10.1016/j.aca.2021.338749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
A new disposable amperometric biosensor for sarcosine (Sar, a biomarker for prostate cancer) was designed based on screen-printed carbon electrodes, Prussian blue, polymer dispersed reduced graphene oxide (P-rGO) nanosheets, and sarcosine oxidase (SOx). Poly(sodium 4-styrenesulfonate-r-LAHEMA) denoted as PSSL was newly synthesized as dispersant for rGO. The P-rGO was utilized for SOx immobilization, the sulfonate and disulfide functionalities in PSSL enable physical adsorption of SOx and its bioactivity and stability properties were improved. The biosensor was optimized by various enzyme concentration, applied potential, and operating pH. Under the optimized conditions, the biosensor exhibited maximum current responses within 5 s at an applied potential of -0.1 V vs. integrated Ag/AgCl reference electrode. The biosensor had a dynamic linear range of 10-400 μM, with a sensitivity of 9.04 μA mM-1 cm-2 and a low detection limit of 0.66 μM (S/N = 3). Additionally, the biosensor possesses strong anti-interference capability, high reproducibility, and storage stability over 3 weeks. Furthermore, its clinical applicability was tested in urine samples from both prostate cancer patients and healthy control, and the analytical recoveries were satisfactory. Therefore, this biosensor has significant potential in the rapid and non-invasive point-of-care testing for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Minho Kwon
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Dinakaran Thirumalai
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Seonghye Kim
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Seulah Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Center, Korea Basic Science Institute, Busan, 46241, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Hong Koo Ha
- Department of Urology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University, Busan, 49241, Republic of Korea.
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
37
|
Affiliation(s)
- Jing Huang
- Center on Nanoenergy Research College of chemistry and chemical engineering Guangxi University Nanning China
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro‐Nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
| | - Zhe Li
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro‐Nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
- Institute of Engineering Medicine School of Life Science Beijing Institute of Technology Beijing China
| | - Yukun Mao
- Department of Orthopedics Zhongnan Hospital of Wuhan University Wuhan Hubei China
| | - Zhou Li
- Center on Nanoenergy Research College of chemistry and chemical engineering Guangxi University Nanning China
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro‐Nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
38
|
Li H, Gu S, Zhang Q, Song E, Kuang T, Chen F, Yu X, Chang L. Recent advances in biofluid detection with micro/nanostructured bioelectronic devices. NANOSCALE 2021; 13:3436-3453. [PMID: 33538736 DOI: 10.1039/d0nr07478k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most biofluids contain a wide variety of biochemical components that are closely related to human health. Analyzing biofluids, such as sweat and tears, may deepen our understanding in pathophysiologic conditions associated with human body, while providing a variety of useful information for the diagnosis and treatment of disorders and disease. Emerging classes of micro/nanostructured bioelectronic devices for biofluid detection represent a recent breakthrough development of critical importance in this context, including traditional biosensors (TBS) and micro/nanostructured biosensors (MNBS). Related biosensors are not restricted to flexible and wearable devices; solid devices are also involved here. This article is a timely overview of recent technical advances in this field, with an emphasis on the new insights of constituent materials, design architectures and detection methods of MNBS that support the necessary levels of biocompatibility, device functionality, and stable operation for component analysis. An additional section discusses and analyzes the existing challenges, possible solutions and future development of MNBS for detecting biofluids.
Collapse
Affiliation(s)
- Hu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China. and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Shaochun Gu
- Department of Material Science and Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China.
| | - Qianmin Zhang
- Department of Material Science and Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China.
| | - Enming Song
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Tairong Kuang
- Department of Material Science and Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China.
| | - Feng Chen
- Department of Material Science and Engineering, Zhejiang University of Technology, Zhejiang, 310014, P. R. China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China. and School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
39
|
Dejous C, Krishnan UM. Sensors for diagnosis of prostate cancer: Looking beyond the prostate specific antigen. Biosens Bioelectron 2020; 173:112790. [PMID: 33190047 DOI: 10.1016/j.bios.2020.112790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Prostate cancer represents one of the most common forms of cancer affecting men across the globe. Due to late diagnosis of this disease, the mortality of this condition is very high. Conventional diagnostic methods like the direct rectal examination are uncomfortable and, in most cases, delayed, and further confirmation is required with biopsies and Gleason score. The most common biomarker approved by the FDA (United States Food and Drug Administration) is the prostate specific antigen (PSA) that is detected by conventional biochemical assays which require expensive reagents, is time-consuming and more often is only indicative and cannot be considered confirmative as it is susceptible to erroneous conclusions. The prostate health index employs quantification of PSA in its free and bound forms to enumerate the risk of prostate cancer and has found acceptance with clinicians though the methods used to determine these quantities are slow and require additional sensitivity. Search for novel biomarkers other than PSA has resulted in the identification of several promising candidates. However, their detection is still heavily dependent upon conventional biochemical assays that retain the challenges of being time-consuming, poorly sensitive and expensive. Development of specific sensor technologies integrating nanomaterials offers a viable alternative for rapid and sensitive determination of these non-PSA markers. This review summarizes the major advances in the development of sensors for diagnosis of prostate cancer using non-PSA markers. It also highlights some of the emerging paradigms in cancer diagnosis that may transform the diagnostic field in the context of prostate cancer.
Collapse
Affiliation(s)
- Corinne Dejous
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, F-33400, France
| | - Uma Maheswari Krishnan
- School of Arts, Science & Humanities, SASTRA Deemed-to-be University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed-to-be University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur, India.
| |
Collapse
|
40
|
Shahzad F, Zaidi SA, Naqvi RA. 2D Transition Metal Carbides (MXene) for Electrochemical Sensing: A Review. Crit Rev Anal Chem 2020; 52:848-864. [PMID: 33108217 DOI: 10.1080/10408347.2020.1836470] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
MXene, a novel class of 2-dimensional transition metal carbides has evolved as a promising material for various applications owing to its outstanding characteristics such as hydrophilicity, high electrical conductivity, surface area, and attractive topological structure. MXenes can form dispersion in common solvents and constitute composite with other nanomaterials, which can be utilized as effective transducers for molecular sensing. MXene-modified support materials, thus provide an intriguing platform for immobilization of target molecules onto their surface. The literature reveals that it has been increasingly utilized in the sensing of diverse types of analytes including glucose, pharmaceuticals, metals and dyes, cancer markers, pesticides, neurotransmitters, small valuable molecules, and so on. In this review, we summarize the recent updates in the MXene modified materials for sensing. For the convenience of our audience, we have distributed the analytes into categories and discussed them comprehensively. Not only we present the synthesis approach, electrochemical properties and surface chemistry of MXenes but also discussed briefly the current challenges and an outlook for future research in the related area.
Collapse
Affiliation(s)
- Faisal Shahzad
- National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Rizwan Ali Naqvi
- Department of Unmanned Vehicle Engineering, Sejong University, Seoul, Korea
| |
Collapse
|